Annales Henri Poincaré

, Volume 13, Issue 2, pp 333–362 | Cite as

Asymptotics for Two-Dimensional Atoms

  • Phan Thanh Nam
  • Fabian Portmann
  • Jan Philip Solovej
Article

Abstract

We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge Z > 0 and N quantum electrons of charge −1 is \({E(N,Z)=-\frac{1}{2}Z^2{\rm ln} Z+(E^{\rm TF}(\lambda)+\frac{1}{2}c^{\rm H})Z^2+o(Z^2)}\) when Z → ∞ and N/Z → λ, where E TF(λ) is given by a Thomas–Fermi type variational problem and c H ≈ −2.2339 is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when Z → ∞, which is contrary to the expected behavior of three-dimensional atoms.

Keywords

Ground State Energy Exterior Region Coulomb Singularity Scott Correction Coherent State Approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun Irene, A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing. Dover Publications, New York (1970)Google Scholar
  2. 2.
    Dirac P.A.M.: Note on exchange phenomena in the Thomas-Fermi atom. Proc. Camb. Phil. Soc. 26, 376–385 (1930)ADSMATHCrossRefGoogle Scholar
  3. 3.
    Duclos P., Štoviček P., Tušek M.: On the two-dimensional Coulomb-like potential with a central point interaction. J. Phys. A: Math. Theor. 43, 474020 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Euler, L.: Inventio summae cuiusque seriei ex dato termino generali. St. Petersbourg (1736)Google Scholar
  5. 5.
    Fefferman C., Seco L.: On the energy of a large atom. Bull. AMS 23, 525–530 (1990)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fermi E.: Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo. Rend. Accad. Naz. Lincei 6, 602–607 (1927)Google Scholar
  7. 7.
    Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: “Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16, 1782–1785 (1977)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Hughes W.: An atomic energy bound that gives Scott’s correction. Adv. Math. 79, 213–270 (1990)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lewin M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lieb E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Lieb E.H.: A lower bound for Coulomb energies. Phys. Lett. A 70, 444–446 (1979)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Lieb E.H.: Variational principle for many-fermion systems. Phys. Rev. Lett. 46, 457–459 (1981)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Lieb E.H., Loss M.: Analysis, 2nd edn. AMS, Providence (2001)MATHGoogle Scholar
  14. 14.
    Lieb E.H., Oxford S.: An improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  15. 15.
    Lieb E.H., Sigal I.M., Simon B., Thirring W.: Asymptotic neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Lieb E.H., Simon B.: Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lieb E.H., Solovej J.P., Yngvason J.: States of large quantum dots in magnetic fields. Phys. Rev. B. 51(16), 10646–10666 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Lieb E.H., Thirring W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    Parfitt D.G.W., Portnoia M.E.: The two-dimensional hydrogen atom revisited. J. Math. Phys. 43(10), 4681 (2002)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Schwinger J.: Thomas-Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Scott J.M.C.: The binding energy of the Thomas-Fermi atom. Phys. Rev. 43(343), 859–867 (1952)Google Scholar
  22. 22.
    Seco L.A., Sigal I.M., Solovej J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Siedentop H., Weikard R.: On the leading energy correction for the statistical model of an atom: interacting case. Commun. Math. Phys. 112, 471–490 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Solovej J.P.: The ionization conjecture in Hartree-Fock theory. Ann. Math. 158, 509–576 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Solovej J.P., Sørensen T.Ø., Spitzer W.: The relativistic Scott correction for atoms and molecules. Commun. Pure Appl. Math. LXIII, 39–118 (2010)CrossRefGoogle Scholar
  26. 26.
    Solovej J.P., Spitzer W.: A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241(2–3), 383–420 (2003)MathSciNetADSMATHGoogle Scholar
  27. 27.
    Thirring W.: A lower bound with the best possible constant for Coulomb Hamiltonians. Commun. Math. Phys. 79, 1–7 (1981)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Thomas L.H.: The calculation of atomic fields. Proc. Camb. Phil. Soc. 23(5), 542–548 (1927)ADSMATHCrossRefGoogle Scholar
  29. 29.
    Yang X.L., Guo S.H., Chan F.T., Wong K.W., Ching W.Y.: Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 43, 1186–1196 (1991)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Phan Thanh Nam
    • 1
  • Fabian Portmann
    • 2
  • Jan Philip Solovej
    • 1
  1. 1.Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations