Annales Henri Poincaré

, Volume 13, Issue 2, pp 333–362 | Cite as

Asymptotics for Two-Dimensional Atoms

  • Phan Thanh Nam
  • Fabian Portmann
  • Jan Philip Solovej
Article

Abstract

We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge Z > 0 and N quantum electrons of charge −1 is \({E(N,Z)=-\frac{1}{2}Z^2{\rm ln} Z+(E^{\rm TF}(\lambda)+\frac{1}{2}c^{\rm H})Z^2+o(Z^2)}\) when Z → ∞ and N/Z → λ, where ETF(λ) is given by a Thomas–Fermi type variational problem and cH ≈ −2.2339 is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when Z → ∞, which is contrary to the expected behavior of three-dimensional atoms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun Irene, A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing. Dover Publications, New York (1970)Google Scholar
  2. 2.
    Dirac P.A.M.: Note on exchange phenomena in the Thomas-Fermi atom. Proc. Camb. Phil. Soc. 26, 376–385 (1930)ADSMATHCrossRefGoogle Scholar
  3. 3.
    Duclos P., Štoviček P., Tušek M.: On the two-dimensional Coulomb-like potential with a central point interaction. J. Phys. A: Math. Theor. 43, 474020 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Euler, L.: Inventio summae cuiusque seriei ex dato termino generali. St. Petersbourg (1736)Google Scholar
  5. 5.
    Fefferman C., Seco L.: On the energy of a large atom. Bull. AMS 23, 525–530 (1990)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fermi E.: Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo. Rend. Accad. Naz. Lincei 6, 602–607 (1927)Google Scholar
  7. 7.
    Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: “Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16, 1782–1785 (1977)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Hughes W.: An atomic energy bound that gives Scott’s correction. Adv. Math. 79, 213–270 (1990)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lewin M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Lieb E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    Lieb E.H.: A lower bound for Coulomb energies. Phys. Lett. A 70, 444–446 (1979)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Lieb E.H.: Variational principle for many-fermion systems. Phys. Rev. Lett. 46, 457–459 (1981)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Lieb E.H., Loss M.: Analysis, 2nd edn. AMS, Providence (2001)MATHGoogle Scholar
  14. 14.
    Lieb E.H., Oxford S.: An improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  15. 15.
    Lieb E.H., Sigal I.M., Simon B., Thirring W.: Asymptotic neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Lieb E.H., Simon B.: Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lieb E.H., Solovej J.P., Yngvason J.: States of large quantum dots in magnetic fields. Phys. Rev. B. 51(16), 10646–10666 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Lieb E.H., Thirring W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    Parfitt D.G.W., Portnoia M.E.: The two-dimensional hydrogen atom revisited. J. Math. Phys. 43(10), 4681 (2002)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Schwinger J.: Thomas-Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Scott J.M.C.: The binding energy of the Thomas-Fermi atom. Phys. Rev. 43(343), 859–867 (1952)Google Scholar
  22. 22.
    Seco L.A., Sigal I.M., Solovej J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    Siedentop H., Weikard R.: On the leading energy correction for the statistical model of an atom: interacting case. Commun. Math. Phys. 112, 471–490 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Solovej J.P.: The ionization conjecture in Hartree-Fock theory. Ann. Math. 158, 509–576 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Solovej J.P., Sørensen T.Ø., Spitzer W.: The relativistic Scott correction for atoms and molecules. Commun. Pure Appl. Math. LXIII, 39–118 (2010)CrossRefGoogle Scholar
  26. 26.
    Solovej J.P., Spitzer W.: A new coherent states approach to semiclassics which gives Scott’s correction. Commun. Math. Phys. 241(2–3), 383–420 (2003)MathSciNetADSMATHGoogle Scholar
  27. 27.
    Thirring W.: A lower bound with the best possible constant for Coulomb Hamiltonians. Commun. Math. Phys. 79, 1–7 (1981)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Thomas L.H.: The calculation of atomic fields. Proc. Camb. Phil. Soc. 23(5), 542–548 (1927)ADSMATHCrossRefGoogle Scholar
  29. 29.
    Yang X.L., Guo S.H., Chan F.T., Wong K.W., Ching W.Y.: Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. Phys. Rev. A 43, 1186–1196 (1991)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Phan Thanh Nam
    • 1
  • Fabian Portmann
    • 2
  • Jan Philip Solovej
    • 1
  1. 1.Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations