Annales Henri Poincaré

, Volume 12, Issue 8, pp 1539–1570 | Cite as

Spectral Theory for a Mathematical Model of the Weak Interaction: The Decay of the Intermediate Vector Bosons W±, II

  • Walter H. Aschbacher
  • Jean-Marie Barbaroux
  • Jérémy Faupin
  • Jean-Claude Guillot
Article

Abstract

We do the spectral analysis of the Hamiltonian for the weak leptonic decay of the gauge bosons W±. Using Mourre theory, it is shown that the spectrum between the unique ground state and the first threshold is purely absolutely continuous. Neither sharp neutrino high-energy cutoff nor infrared regularization is assumed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammari Z.: Scattering theory for a class of fermionic Pauli-Fierz model. J. Funct. Anal. 208(2), 302–359 (2004)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Amour L., Grébert B., Guillot J.-C.: A mathematical model for the Fermi weak interactions. Cubo 9(2), 37–57 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Amrein, W.O., Boutet de Monvel, A., Georgescu, V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians. In: Progress in Mathematics, vol. 135. Birkhäuser Verlag, Basel (1996)Google Scholar
  4. 4.
    Bach V., Fröhlich J., Pizzo A.: Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Commun. Math. Phys. 264(1), 145–165 (2006)ADSMATHCrossRefGoogle Scholar
  5. 5.
    Bach V., Fröhlich J., Sigal I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207(2), 249–290 (1999)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Barbaroux J.-M., Dimassi M., Guillot J.-C.: Quantum electrodynamics of relativistic bound states with cutoffs II. Contemp. Math. 307(6), 9–14 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barbaroux J.-M., Dimassi M., Guillot J.-C.: Quantum electrodynamics of relativistic bound states with cutoffs. J. Hyperbolic Differ. Equ. 1(2), 271–314 (2004)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Barbaroux J.-M., Guillot J.-C.: Limiting absorption principle at low energies for a mathematical model of weak interactions: the decay of a boson. C. R. Acad. Sci. Paris Ser. I 347(17–18), 1087–1092 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Barbaroux, J.-M., Guillot, J.-C.: Spectral theory for a mathematical model of the weak interaction: the decay of the intermediate vector bosons W ±. I. Adv. Math. Phys. ID 978903 (2009). arXiv:0904.3171Google Scholar
  10. 10.
    Chen, T., Faupin, J., Fröhlich, J., Sigal, I.M.: Local decay in non-relativistic QED. Commun. Math. Phys. (to appear)Google Scholar
  11. 11.
    Dereziński J., Gérard C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11(4), 383–450 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Dereziński, J.: Introduction to representations of the canonical commutation and anticommutation relations. In: Large Coulomb Systems. Lecture Notes in Physics, vol. 695, pp. 63–143. Springer, Berlin (2006)Google Scholar
  13. 13.
    Dimassi M., Guillot J.C.: The quantum electrodynamics of relativistic states with cutoffs I. Appl. Math. Lett. 16(4), 551–555 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Fröhlich J., Griesemer M., Sigal I.M.: Spectral theory for the standard model of non-relativistic QED. Commun. Math. Phys. 283(3), 613–646 (2008)ADSMATHCrossRefGoogle Scholar
  15. 15.
    Georgescu V., Gérard C.: On the virial theorem in quantum mechanics. Commun. Math. Phys. 208, 275–281 (1999)ADSMATHCrossRefGoogle Scholar
  16. 16.
    Gérard C.: A proof of the abstract limiting absorption principles by energy estimates. J. Funct. Anal. 254(11), 2707–2724 (2008)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Georgescu V., Gérard C., Møller J.S.: Spectral theory of massless Pauli-Fierz models. Commun. Math. Phys. 249(1), 29–78 (2004)ADSMATHCrossRefGoogle Scholar
  18. 18.
    Golénia S., Jecko T.: A new look at Mourre’s commutator theory. Complex Oper. Theory 1(3), 399–422 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Greiner W., Müller B.: Gauge Theory of Weak Interactions. Springer, Berlin (1989)Google Scholar
  20. 20.
    Griesemer M., Lieb E.H., Loss M.: Ground states in non-relativistic quantum electrodynamics. Inv. Math. 145, 557–595 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Kato T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften, vol. 132, 1st edn. Springer, Berlin (1966)Google Scholar
  22. 22.
    Reed M., Simon B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)MATHGoogle Scholar
  23. 23.
    Sahbani J.: The conjugate operator method for locally regular Hamiltonians. J. Oper. Theory 38(2), 297–322 (1997)MathSciNetMATHGoogle Scholar
  24. 24.
    Weinberg S.: The Quantum Theory of Fields, vol. I. Foundations. Cambridge University Press, Cambridge (2005)Google Scholar
  25. 25.
    Weinberg S.: The Quantum Theory of Fields, vol. II. Modern Applications. Cambridge University Press, Cambridge (2005)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Walter H. Aschbacher
    • 1
  • Jean-Marie Barbaroux
    • 2
    • 3
  • Jérémy Faupin
    • 4
  • Jean-Claude Guillot
    • 1
  1. 1.Centre de Mathématiques Appliquées, UMR 7641École Polytechnique-CNRSPalaiseau CedexFrance
  2. 2.Centre de Physique ThéoriqueMarseille Cedex 9France
  3. 3.Département de MathématiquesUniversité du Sud Toulon-VarLa Garde CedexFrance
  4. 4.Institut de Mathématiques de Bordeaux , UMR-CNRS 5251Université de Bordeaux 1Talence CedexFrance

Personalised recommendations