Advertisement

Annales Henri Poincaré

, Volume 12, Issue 8, pp 1539–1570 | Cite as

Spectral Theory for a Mathematical Model of the Weak Interaction: The Decay of the Intermediate Vector Bosons W ±, II

  • Walter H. Aschbacher
  • Jean-Marie Barbaroux
  • Jérémy Faupin
  • Jean-Claude Guillot
Article

Abstract

We do the spectral analysis of the Hamiltonian for the weak leptonic decay of the gauge bosons W ±. Using Mourre theory, it is shown that the spectrum between the unique ground state and the first threshold is purely absolutely continuous. Neither sharp neutrino high-energy cutoff nor infrared regularization is assumed.

Keywords

Gauge Boson Weak Decay Limit Absorption Principle Full Family Infrared Regularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammari Z.: Scattering theory for a class of fermionic Pauli-Fierz model. J. Funct. Anal. 208(2), 302–359 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Amour L., Grébert B., Guillot J.-C.: A mathematical model for the Fermi weak interactions. Cubo 9(2), 37–57 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Amrein, W.O., Boutet de Monvel, A., Georgescu, V.: C 0-groups, commutator methods and spectral theory of N-body Hamiltonians. In: Progress in Mathematics, vol. 135. Birkhäuser Verlag, Basel (1996)Google Scholar
  4. 4.
    Bach V., Fröhlich J., Pizzo A.: Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Commun. Math. Phys. 264(1), 145–165 (2006)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Bach V., Fröhlich J., Sigal I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207(2), 249–290 (1999)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Barbaroux J.-M., Dimassi M., Guillot J.-C.: Quantum electrodynamics of relativistic bound states with cutoffs II. Contemp. Math. 307(6), 9–14 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barbaroux J.-M., Dimassi M., Guillot J.-C.: Quantum electrodynamics of relativistic bound states with cutoffs. J. Hyperbolic Differ. Equ. 1(2), 271–314 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Barbaroux J.-M., Guillot J.-C.: Limiting absorption principle at low energies for a mathematical model of weak interactions: the decay of a boson. C. R. Acad. Sci. Paris Ser. I 347(17–18), 1087–1092 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Barbaroux, J.-M., Guillot, J.-C.: Spectral theory for a mathematical model of the weak interaction: the decay of the intermediate vector bosons W ±. I. Adv. Math. Phys. ID 978903 (2009). arXiv:0904.3171Google Scholar
  10. 10.
    Chen, T., Faupin, J., Fröhlich, J., Sigal, I.M.: Local decay in non-relativistic QED. Commun. Math. Phys. (to appear)Google Scholar
  11. 11.
    Dereziński J., Gérard C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11(4), 383–450 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dereziński, J.: Introduction to representations of the canonical commutation and anticommutation relations. In: Large Coulomb Systems. Lecture Notes in Physics, vol. 695, pp. 63–143. Springer, Berlin (2006)Google Scholar
  13. 13.
    Dimassi M., Guillot J.C.: The quantum electrodynamics of relativistic states with cutoffs I. Appl. Math. Lett. 16(4), 551–555 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fröhlich J., Griesemer M., Sigal I.M.: Spectral theory for the standard model of non-relativistic QED. Commun. Math. Phys. 283(3), 613–646 (2008)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Georgescu V., Gérard C.: On the virial theorem in quantum mechanics. Commun. Math. Phys. 208, 275–281 (1999)ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Gérard C.: A proof of the abstract limiting absorption principles by energy estimates. J. Funct. Anal. 254(11), 2707–2724 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Georgescu V., Gérard C., Møller J.S.: Spectral theory of massless Pauli-Fierz models. Commun. Math. Phys. 249(1), 29–78 (2004)ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Golénia S., Jecko T.: A new look at Mourre’s commutator theory. Complex Oper. Theory 1(3), 399–422 (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Greiner W., Müller B.: Gauge Theory of Weak Interactions. Springer, Berlin (1989)Google Scholar
  20. 20.
    Griesemer M., Lieb E.H., Loss M.: Ground states in non-relativistic quantum electrodynamics. Inv. Math. 145, 557–595 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Kato T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften, vol. 132, 1st edn. Springer, Berlin (1966)Google Scholar
  22. 22.
    Reed M., Simon B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)zbMATHGoogle Scholar
  23. 23.
    Sahbani J.: The conjugate operator method for locally regular Hamiltonians. J. Oper. Theory 38(2), 297–322 (1997)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Weinberg S.: The Quantum Theory of Fields, vol. I. Foundations. Cambridge University Press, Cambridge (2005)Google Scholar
  25. 25.
    Weinberg S.: The Quantum Theory of Fields, vol. II. Modern Applications. Cambridge University Press, Cambridge (2005)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Walter H. Aschbacher
    • 1
  • Jean-Marie Barbaroux
    • 2
    • 3
  • Jérémy Faupin
    • 4
  • Jean-Claude Guillot
    • 1
  1. 1.Centre de Mathématiques Appliquées, UMR 7641École Polytechnique-CNRSPalaiseau CedexFrance
  2. 2.Centre de Physique ThéoriqueMarseille Cedex 9France
  3. 3.Département de MathématiquesUniversité du Sud Toulon-VarLa Garde CedexFrance
  4. 4.Institut de Mathématiques de Bordeaux , UMR-CNRS 5251Université de Bordeaux 1Talence CedexFrance

Personalised recommendations