Advertisement

Annales Henri Poincaré

, Volume 12, Issue 7, pp 1417–1429 | Cite as

Kochen–Specker Sets and Generalized Orthoarguesian Equations

  • Norman D. Megill
  • Mladen PavičićEmail author
Article

Abstract

We prove that the 7oa class (equational variety) of generalized orthoarguesian lattices is properly included in all noa classes for n < 7. This result strengthens the conjecture that any generalized orthoarguesian equation is strictly stronger than those of lower orders. The result emerged from our recent analysis of whether three-dimensional Kochen–Specker sets can be represented by Greechie lattices, which are a kind of orthomodular lattice.

Keywords

Hilbert Space Quantum Logic Nest Loop Orthomodular Lattice Quantum Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalmbach G.: Orthomodular Lattices. Academic Press, London (1983)zbMATHGoogle Scholar
  2. 2.
    Megill N.D., Pavičić M.: Hilbert Lattice Equations. Ann. Henri Poincaré 10, 1335–1358 (2010)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Pavičić, M., McKay, B.D., Megill, N.D., Fresl, K.: Graph Approach to Quantum Systems. J. Math. Phys. 51, 102103–1–31 (2010)Google Scholar
  4. 4.
    Peres A.: Two Simple Proofs of the Bell–Kochen–Specker Theorem. J. Phys. A 24, L175–L178 (1991)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Megill N.D., Pavičić M.: Equations, states, and lattices of infinite-dimensional Hilbert Space. Int. J. Theor. Phys. 39, 2337–2379 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Pavičić M., Megill N.D.: Quantum Logic and Quantum Computation. In: Engesser, K., Gabbay, D., Lehmann, D. (eds) Handbook of Quantum Logic and Quantum Structures. Quantum Structures, pp. 751–787. Elsevier, Amsterdam (2007)Google Scholar
  7. 7.
    Isham C.J.: Lectures on Quantum Theory. Imperial College Press, London (1995)zbMATHGoogle Scholar
  8. 8.
    Halmos P.R.: Introduction to Hilbert Space and the Spectral Theory of Spectral Multiplicity. Chelsea, New York (1957)zbMATHGoogle Scholar
  9. 9.
    Mittelstaedt, P.: Quantum Logic. Synthese Library, vol. 126, Reidel, London (1978)Google Scholar
  10. 10.
    Beran L.: Orthomodular Lattices; Algebraic Approach. D. Reidel, Dordrecht (1985)zbMATHGoogle Scholar
  11. 11.
    Pavičić M., Megill N.D.: Is Quantum Logic a Logic?. In: Engesser, K., Gabbay, D., Lehmann, D. (eds) Handbook of Quantum Logic and Quantum Structures. Quantum Logic, pp. 23–47. Elsevier, Amsterdam (2009)Google Scholar
  12. 12.
    Birkhoff, G.: Lattice Theory. In: American Mathematical Society Colloqium Publications, 2nd (revised) edn. vol. XXV, American Mathematical Society, New York(1948)Google Scholar
  13. 13.
    Birkhoff, G.: Lattice Theory. In: American Mathematical Society Colloquium Publications, 3rd (new) edn. vol. XXV, American Mathematical Society, Providence (1967)Google Scholar
  14. 14.
    Greechie R.J.: Orthomodular lattices admitting no states. J. Comb. Theory A 10, 119–132 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dichtl M.: There are loops of order three in orthomodular lattices. Arch. Math. 37, 285–286 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dichtl M.: Astroids and Pastings. Algebra Univ. 18, 380–385 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Navara M.: Constructions of Quantum Structures. In: Engesser, K., Gabbay, D., Lehmann, D. (eds) Handbook of Quantum Logic and Quantum Structures. Quantum Structures, pp. 335–366. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  18. 18.
    Svozil K.: Quantum scholasticism: on quantum contexts, counterfactuals, and the absurdities of quantum omniscience. Inf. Sci. 179, 535–541 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Barrett J., Leifer M.: The de Finetti theorem for test spaces. New J. Phys. 11, 033024 (2009)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Megill N.D., Pavičić M.: Equations, states, and lattices of infinite-dimensional Hilbert Space. Int. J. Theor. Phys. 39, 2337–2379 (2000) ArXiv:quant-ph/0009038CrossRefzbMATHGoogle Scholar
  21. 21.
    McKay B.D., Megill N.D., Pavičić M.: Algorithms for Greechie Diagrams. Int. J. Theor. Phys. 39, 2381–2406 (2000) ArXiv:quant-ph/0009039CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Boston Information GroupLexingtonUSA
  2. 2.Institute for Theoretical Atomic, Molecular, and Optical PhysicsPhysics Department at Harvard University and Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  3. 3.Physics ChairFaculty of Civil Engineering, University of ZagrebZagrebCroatia

Personalised recommendations