Advertisement

Annales Henri Poincaré

, Volume 12, Issue 5, pp 965–985 | Cite as

Areas and Volumes for Null Cones

  • James D. E. GrantEmail author
Article

Abstract

Motivated by recent work of Choquet-Bruhat et al. (Class Quantum Gravity 26(135011), 22, 2009), we prove monotonicity properties and comparison results for the area of slices of the null cone of a point in a Lorentzian manifold. We also prove volume comparison results for subsets of the null cone analogous to the Bishop–Gromov relative volume monotonicity theorem and Günther’s volume comparison theorem. We briefly discuss how these estimates may be used to control the null second fundamental form of slices of the null cone in Ricci-flat Lorentzian four-manifolds with null curvature bounded above.

Keywords

Minkowski Space Ricci Curvature Ricci Tensor Comparison Theorem Null Geodesic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander S. B., Bishop R. L.: Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. Comm. Anal. Geom. 16, 251–282 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cheeger, J., Ebin, D. G.: Comparison theorems in Riemannian geometry. North-Holland Mathematical Library, vol. 9. North-Holland Publishing Co., Amsterdam (1975)Google Scholar
  3. 3.
    Cheeger J., Gromov M., Taylor M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17, 15–53 (1982)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Choquet-Bruhat Y., Chruściel P.T., Martín-García J.M.: The light-cone theorem. Class. Quantum Gravity 26(135011), 22 (2009)Google Scholar
  5. 5.
    Ehrlich, P. E., Kim, S.-B.: Riccati and index comparison methods in Lorentzian and Riemannian geometry. In: Advances in Lorentzian geometry, pp. 63–75. Shaker Verlag, Aachen (2008)Google Scholar
  6. 6.
    Ehrlich P. E., Sánchez M.: Some semi-Riemannian volume comparison theorems. Tohoku Math. J 2(52), 331–348 (2000)CrossRefGoogle Scholar
  7. 7.
    Gromov., M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Birkhäuser Boston Inc., BostonGoogle Scholar
  8. 8.
    Harris S. G.: A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J. 31, 289–308 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hawking S. W., Ellis G. F. R.: The Large Scale Structure of Space-Time. Cambridge University Press, London (1973)zbMATHCrossRefGoogle Scholar
  10. 10.
    Klainerman S., Rodnianski I.: Causal geometry of Einstein-vacuum spacetimes with finite curvature flux. Invent. Math. 159, 437–529 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Penrose, R., Rindler, W.: Spinors and Space-Time. Cambridge University Press, Cambridge (1987, 1988)Google Scholar
  12. 12.
    Petersen P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171. Springer, New York (2006)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Institut für Grundlagen der BauingenieurwissenschaftenLeopold-Franzens-Universität InnsbruckInnsbruckAustria
  2. 2.Fakultät für MathematikUniversität WienWienAustria

Personalised recommendations