Annales Henri Poincaré

, Volume 12, Issue 4, pp 777–804

Divergences in Quantum Field Theory on the Noncommutative Two-Dimensional Minkowski Space with Grosse–Wulkenhaar Potential



Quantum field theory on the noncommutative two-dimensional Minkowski space with Grosse–Wulkenhaar potential is discussed in two ways: in terms of a continuous set of generalised eigenfunctions of the wave operator, and directly in position space. In both settings, we find a new type of divergence in planar graphs. It is present at and above the self-dual point. This new kind of divergence might make the construction of a Minkowski space version of the Grosse–Wulkenhaar model impossible.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szabo R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207 (2003) [arXiv:hep-th/0109162]CrossRefMATHADSMathSciNetGoogle Scholar
  2. 2.
    Wulkenhaar R.: Field theories on deformed spaces. J. Geom. Phys. 56, 108 (2006)CrossRefMATHADSMathSciNetGoogle Scholar
  3. 3.
    Rivasseau V.: Non-commutative renormalization. [arXiv:0705.0705 [hep-th]]Google Scholar
  4. 4.
    Filk T.: Divergencies in a field theory on quantum space. Phys. Lett. B 376, 53 (1996)CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    Doplicher S., Fredenhagen K., Roberts J.E.: The quantum structure of space–time at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187 (1995) [arXiv:hep-th/0303037]CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    Minwalla S., Van Raamsdonk M., Seiberg N.: Noncommutative perturbative dynamics. JHEP 0002, 020 (2000) [arXiv:hep-th/9912072]CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Gomis J., Mehen T.: Space–time noncommutative field theories and unitarity. Nucl. Phys. B 591, 265 (2000) [arXiv:hep-th/0005129]CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    Bahns D., Doplicher S., Fredenhagen K., Piacitelli G.: On the unitarity problem in space/time noncommutative theories. Phys. Lett. B 533, 178 (2002) [arXiv:hep-th/0201222]CrossRefMATHADSMathSciNetGoogle Scholar
  9. 9.
    Bahns D., Doplicher S., Fredenhagen K., Piacitelli G.: Ultraviolet finite quantum field theory on quantum spacetime. Commun. Math. Phys. 237, 221 (2003) [arXiv:hep-th/0301100]MATHADSMathSciNetGoogle Scholar
  10. 10.
    Yang C.N., Feldman D.: The S matrix in the Heisenberg representation. Phys. Rev. 79, 972 (1950)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Bahns D., Doplicher S., Fredenhagen K., Piacitelli G.: Field theory on noncommutative spacetimes: quasiplanar wick products. Phys. Rev. D 71, 025022 (2005) [arXiv:hep-th/0408204]CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Döscher C., Zahn J.: Dispersion relations in the noncommutative \({\phi^3}\) and Wess–Zumino model in the Yang–Feldman formalism. Ann. Henri Poincaré 10, 35 (2009) [arXiv:hep-th/0605062]CrossRefMATHADSGoogle Scholar
  13. 13.
    Langmann E., Szabo R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168 (2002) [arXiv:hep-th/0202039]CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Langmann E., Szabo R.J., Zarembo K.: Exact solution of quantum field theory on noncommutative phase spaces. JHEP 0401, 017 (2004) [arXiv:hepth/ 0308043]CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Grosse H., Wulkenhaar R.: Renormalisation of \({\phi^4}\) -theory on noncommutative \({\mathbb{R}^2}\) in the matrix base. JHEP 0312, 019 (2003) [arXiv:hep-th/0307017]CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Grosse H., Wulkenhaar R.: Renormalisation of \({\phi^4}\) theory on noncommutative \({\mathbb{R}^4}\) in the matrix base. Commun. Math. Phys. 256, 305 (2005) [arXiv: hepth/0401128]CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    Grosse H., Wulkenhaar R.: The β-function in duality-covariant noncommutative \({\phi^4}\) -theory. Eur. Phys. J. C 35, 277 (2004) [arXiv:hep-th/0402093]CrossRefMATHADSMathSciNetGoogle Scholar
  18. 18.
    Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative \({\phi^4_4}\) theory to all orders. Phys. Lett. B 649, 95. [arXiv:hep-th/0612251]Google Scholar
  19. 19.
    Fischer A., Szabo R.J.: Duality covariant quantum field theory on noncommutative Minkowski space. JHEP 0902, 031 (2009) [arXiv:0810.1195 [hep-th]]CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Friedlander F.G.: The Wave Equation on a Curved Space–Time. Cambridge University Press, Cambridge (1975)MATHGoogle Scholar
  21. 21.
    Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996) [arXiv:gr-qc/9510056]CrossRefMATHADSGoogle Scholar
  22. 22.
    Chruscinski D.: Quantum mechanics of damped systems II. Damping and parabolic potential barrier. J. Math. Phys. 45, 841 (2004) [arXiv:mathph/ 0307047]CrossRefMATHADSMathSciNetGoogle Scholar
  23. 23.
    Bollini C.G., Oxman L.E.: Shannon entropy and the eigenstates of the single-mode squeeze operator. Phys. Rev. A 47, 2339 (1993)CrossRefADSGoogle Scholar
  24. 24.
    Chruscinski D.: Quantum mechanics of damped systems. J. Math. Phys. 44, 3718 (2003) [arXiv:math-ph/0301024]CrossRefMATHADSMathSciNetGoogle Scholar
  25. 25.
    Abramowitz M., Stegun I. A.: Handbook of Mathematical Functions. Dover, New York (1964)MATHGoogle Scholar
  26. 26.
    Hörmander L.: The Analysis of Linear Partial Differential Operators I, 2nd edn. Springer, Berlin (1990)MATHGoogle Scholar
  27. 27.
    Steinmann O.: Perturbation Expansions in Axiomatic Field Theory. Springer, Berlin (1971)Google Scholar
  28. 28.
    Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000) [arXiv:math-ph/9903028]CrossRefMATHADSMathSciNetGoogle Scholar
  29. 29.
    Gel’fand I. M., Shilov G. E.: Generalized Functions II. Academic Press, New York (1964)Google Scholar
  30. 30.
    Soloviev M.A.: Star product algebras of test functions. Theor. Math. Phys. 153, 1351 (2007) [arXiv:0708.0811 [hep-th]]CrossRefMATHGoogle Scholar
  31. 31.
    Chaichian M., Mnatsakanova M., Tureanu A., Vernov Y.: Test functions space in noncommutative quantum field theory. JHEP 0809, 125 (2008) [arXiv: 0706.1712 [hep-th]]CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Evgrafov M.A.: Asymptotic Estimates and Entire Functions. Gordon and Breach, New York (1961)MATHGoogle Scholar
  33. 33.
    Vignes-Tourneret, F.: Renormalisation of non commutative field theories (in French). PhD thesis, Orsay. [arXiv:math-ph/0612014]Google Scholar
  34. 34.
    Gradshteyn I.S., Ryzhik I.M.: Table of Integrals, Series and Products, 4th edn. Academic Press, New York (1965)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany

Personalised recommendations