Annales Henri Poincaré

, Volume 11, Issue 6, pp 1085–1116 | Cite as

Entropy of Semiclassical Measures for Nonpositively Curved Surfaces



We study the asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surface of nonpositive sectional curvature. To do this, we look at sequences of distributions associated to them and we study the entropic properties of their accumulation points, the so-called semiclassical measures. Precisely, we show that the Kolmogorov–Sinai entropy of a semiclassical measure μ for the geodesic flow gt is bounded from below by half of the Ruelle upper bound, i.e.
$$h_{KS}(\mu,g)\geq \frac{1}{2} \int\limits_{S^*M} \chi^+(\rho) {\rm d} \mu(\rho),$$
where χ+(ρ) is the upper Lyapunov exponent at point ρ. The main strategy is the same as in Rivière (Duke Math J, arXiv:0809.0230, 2008) except that we have to deal with weakly chaotic behavior.


  1. 1.
    Abramov L.M.: On the entropy of a flow. Transl. AMS 49, 167–170 (1966)MATHGoogle Scholar
  2. 2.
    Anantharaman N.: Entropy and the localization of eigenfunctions. Ann. Math. 168, 435–475 (2008)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Anantharaman, N., Koch, H., Nonnenmacher, S.: Entropy of eigenfunctions. International Congress of Mathematical Physics, arXiv:0704.1564Google Scholar
  4. 4.
    Anantharaman N., Nonnenmacher S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Fourier 57, 2465–2523 (2007)MATHMathSciNetGoogle Scholar
  5. 5.
    Ballmann W., Brin M., Burns K.: On surfaces with no conjugate points. J. Differ. Geom. 25, 249–273 (1987)MATHMathSciNetGoogle Scholar
  6. 6.
    Barreira L., Pesin Y.: Lectures on Lyapunov exponents and smooth ergodic theory. Proc. Symp. Pure Math. 69, 3–89 (2001)MathSciNetGoogle Scholar
  7. 7.
    Colin de Verdière Y.: Ergodicité et fonctions propres du Laplacien. Comm. Math. Phys. 102, 497–502 (1985)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dimassi M., Sjöstrand J.: Spectral Asymptotics in the Semiclassical Limit. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  9. 9.
    Donnelly H.: Quantum unique ergodicity. Proc. Am. Math. Soc. 131, 2945–2951 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Eberlein P.: When is a geodesic flow of Anosov type I. J. Differ. Geom. 8, 437–463 (1973)MATHMathSciNetGoogle Scholar
  11. 11.
    Eberlein P.: Geodesic flows in manifolds of nonpositive curvature. Proc. Symp. Pure Math. 69, 525–571 (2001)MathSciNetGoogle Scholar
  12. 12.
    Freire A., Mañé R.: On the entropy of the geodesic flow for manifolds without conjugate points. Inv. Math. 69, 375–392 (1982)MATHCrossRefADSGoogle Scholar
  13. 13.
    Green L.: Geodesic instability. Proc. Am. Math. Soc. 7, 438–448 (1956)MATHCrossRefGoogle Scholar
  14. 14.
    Hassell A.: Ergodic billiards that are not quantum unique ergodic. With an appendix by A. Hassell and L. Hillairet. Ann. Math. 171(1), 605–618 (2010)MATHMathSciNetGoogle Scholar
  15. 15.
    Ledrappier F., Young L.-S.: The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula. Ann. Math. 122, 509–539 (1985)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rivière, G.: Entropy of semiclassical measures in dimension 2. Duke Math. J. (2010, to appear). arXiv:0809.0230Google Scholar
  17. 17.
    Rudnick Z., Sarnak P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys. 161, 195–213 (1994)MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Ruelle D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9, 83–87 (1978)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ruggiero, R.O.: Dynamics and global geometry of manifolds without conjugate points. Ensaios Mate. 12, Soc. Bras. Mate. (2007)Google Scholar
  20. 20.
    Shnirelman A.: Ergodic properties of eigenfunctions. Usp. Math. Nauk. 29, 181–182 (1974)Google Scholar
  21. 21.
    Sjöstrand J., Zworski M.: Asymptotic distribution of resonances for convex obstacles. Acta Math. 183, 191–253 (1999)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Walters P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)MATHGoogle Scholar
  23. 23.
    Zelditch S.: Uniform distribution of the eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Centre de Mathématiques Laurent Schwartz (UMR 7640)École PolytechniquePalaiseau CedexFrance

Personalised recommendations