Advertisement

Annales Henri Poincaré

, Volume 11, Issue 5, pp 943–971 | Cite as

Exponential Renormalization

  • Kurusch Ebrahimi-Fard
  • Frédéric PatrasEmail author
Article

Abstract

Moving beyond the classical additive and multiplicative approaches, we present an “exponential” method for perturbative renormalization. Using Dyson’s identity for Green’s functions as well as the link between the Faà di Bruno Hopf algebra and the Hopf algebras of Feynman graphs, its relation to the composition of formal power series is analyzed. Eventually, we argue that the new method has several attractive features and encompasses the BPHZ method. The latter can be seen as a special case of the new procedure for renormalization scheme maps with the Rota–Baxter property. To our best knowledge, although very natural from group-theoretical and physical points of view, several ideas introduced in the present paper seem to be new (besides the exponential method, let us mention the notions of counter-factors and of order n bare coupling constants).

Keywords

Hopf Algebra Formal Power Series Feynman Rule Feynman Graph Subtraction Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellon M., Schaposnik F.: Renormalization group functions for the Wess-Zumino model: up to 200 loops through Hopf algebras. Nuclear Phys. B 800, 517 (2008)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Brouder Ch., Fauser B., Frabetti A., Krattenthaler Ch.: Non-commutative Hopf algebra of formal diffeomorphisms. Adv. Math. 200, 479 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brown, L. (ed.): Renormalization: From Lorentz to Landau (and Beyond). Springer, New York (1993)Google Scholar
  4. 4.
    Cartier, P.: Hyperalgèbres et groupes de Lie formels. In: Séminaire “Sophus Lie” de la Faculté des Sciences de Paris, 1955–56. Secrétariat mathématique, 11 rue Pierre Curie, Paris, 61 pp (1957)Google Scholar
  5. 5.
    Caswell W.E., Kennedy A.D.: A simple approach to renormalization theory. Phys. Rev. D 25, 392 (1982)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Collins J.: Renormalization. Cambridge monographs in mathematical physics, Cambridge (1984)zbMATHCrossRefGoogle Scholar
  7. 7.
    Connes A., Kreimer D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203 (1998)zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann-Hilbert problem II: the β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216, 215 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives Colloquium Publications, vol. 55. American Mathematical Society, Providence (2008)Google Scholar
  11. 11.
    Delamotte B.: A hint of renormalization. Am. J. Phys. 72, 170 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Dyson F.: The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736 (1949)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F.: A Lie theoretic approach to renormalization. Commun. Math. Phys. 276, 519 (2007)zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F.: Rota–Baxter algebras and new combinatorial identities. Lett. Math. Phys. 81(1), 61 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Ebrahimi-Fard K., Manchon D., Patras F.: A noncommutative Bohnenblust–Spitzer identity for Rota–Baxter algebras solves Bogoliubov’s recursion. J. Noncommutative Geom. 3(2), 181 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ebrahimi-Fard, K., Patras, F.: A Zassenhaus-type algorithm solves the Bogoliubov recursion. In: Doebner, H.-D., Dobrev, V.K. (eds.) Proceedings of VII International Workshop“Lie Theory and Its Applications in Physics”, Varna, June 2007Google Scholar
  17. 17.
    Figueroa H., Gracia-Bondía J.M.: Combinatorial Hopf algebras in quantum field theory I. Rev. Math. Phys. 17, 881 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Itzykson C., Zuber J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)Google Scholar
  19. 19.
    Joni S.A., Rota G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61, 93 (1979)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Kreimer D.: Anatomy of a gauge theory. Ann. Phys. 321, 2757 (2006)zbMATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Kreimer D.: Chen’s iterated integral represents the operator product expansion. Adv. Theor. Math. Phys. 3, 627–670 (1999)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Manchon, D.: Hopf algebras in renormalisation. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5, pp. 365–427. Elsevier, Oxford (2008)Google Scholar
  23. 23.
    Reutenauer C.: Free Lie Algebras. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  24. 24.
    van Suijlekom W.: Multiplicative renormalization and Hopf algebras. In: Ceyhan, O., Manin, Yu.-I., Marcolli, M. (eds) Arithmetic and Geometry Around Quantization, Birkhäuser, Basel (2008)Google Scholar
  25. 25.
    van Suijlekom W.: Renormalization of gauge fields: a Hopf algebra approach. Commun. Math. Phys. 276, 773 (2007)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad de ZaragozaZaragozaSpain
  2. 2.Université de Nice, Laboratoire J.-A. Dieudonné, UMR 6621, CNRSNice Cedex 02France

Personalised recommendations