Annales Henri Poincaré

, Volume 11, Issue 3, pp 539–564

A Time-Dependent Perturbative Analysis for a Quantum Particle in a Cloud Chamber

  • Gianfausto Dell’Antonio
  • Rodolfo Figari
  • Alessandro Teta
Article

Abstract

We consider a simple model of a cloud chamber consisting of a test particle (the α-particle) interacting with two quantum systems (the atoms of the vapor) initially confined around \({a_1, a_2 \in \mathbb{R}^3}\) . At time zero, the α-particle is described by an outgoing spherical wave centered in the origin and the atoms are in their ground state. We show that, under suitable assumptions on the physical parameters of the system and up to second order in perturbation theory, the probability that both atoms are ionized is negligible unless a2 lies on the line joining the origin with a1. The work is a fully time-dependent version of the original analysis proposed by Mott in 1929.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio S., Gesztesy F., Hogh-Krohn R., Holden H.: Solvable Models in Quantum Mechanics. Springer, New York (1988)MATHGoogle Scholar
  2. 2.
    Bell, J.: Quantum mechanics for cosmologists. In: Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press (1988)Google Scholar
  3. 3.
    Bleinstein N., Handelsman R.A.: Asymptotic Expansions of Integrals. Dover Publication, New York (1975)Google Scholar
  4. 4.
    Blasi R., Pascazio S., Takagi S.: Particle tracks and the mechanism of decoherence in a model bubble chamber. Phys. Lett. A 250, 230–240 (1998)CrossRefADSGoogle Scholar
  5. 5.
    Born M., Einstein A.: Born–Einstein Letters, 1916–1955. Macmillan Science Publ., (2004)Google Scholar
  6. 6.
    Broyles A.A.: Wave mechanics of particle detectors. Phys. Rev. A 48(2), 1055–1065 (1993)CrossRefADSGoogle Scholar
  7. 7.
    Cacciapuoti, C., Carlone, R., Figari, R.: A solvable model of a tracking chamber. Rep. Math. Phys. 59 (2007)Google Scholar
  8. 8.
    Condon E., Gurney R.: Nature 122, 439 (1928)MATHCrossRefADSGoogle Scholar
  9. 9.
    Castagnino M., Laura R.: Functional approach to quantum decoherence and the classical final limit: the Mott and cosmological problems. Int. J. Theo. Phys. 39(7), 1737–1765 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dell’Antonio G., Figari R., Teta A.: Joint excitation probability for two harmonic oscillators in dimension one and the Mott problem. J. Math. Phys. 49(4), 042105 (2008)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Fedoryuk M.V.: The stationary phase method and pseudodifferential operators. Usp. Mat. Nauk 26(1), 67–112 (1971)MATHGoogle Scholar
  12. 12.
    Gamow G.: Zur Quantentheorie des Atomkernes. Zeit. f. Phys. 51, 204–212 (1928)CrossRefADSGoogle Scholar
  13. 13.
    Giulini D., Joos E., Kiefer C., Kupsch J., Stamatescu I.-O., Zeh H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)MATHGoogle Scholar
  14. 14.
    Halliwell J.J.: Trajectories for the wave function of the universe from a simple detector model. Phys. Rev. D 64, 044008 (2001)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Heisenberg W.: The Physical Principles of Quantum Theory. Dover Publication, New York (1951)Google Scholar
  16. 16.
    Hörmander L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1983)Google Scholar
  17. 17.
    Hornberger, K.: Introduction to decoherence theory. arXiv:quant-ph/0612118v3, 5 Nov 2008Google Scholar
  18. 18.
    Mott N.F.: The wave mechanics of α-ray tracks. Proc. R. Soc. Lond. A 126, 79–84 (1929)CrossRefADSGoogle Scholar
  19. 19.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness. Academic Press, London (1975)MATHGoogle Scholar
  20. 20.
    Robert D.: Semi-classical approximation in quantum mechanics. A survey of old and recent mathematical results. Helv. Phys. Acta 71, 44–116 (1998)MathSciNetGoogle Scholar
  21. 21.
    Steinmann O.: Particle localization in field theory. Comm. Math. Phys. 7, 112–137 (1968)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Gianfausto Dell’Antonio
    • 1
    • 2
  • Rodolfo Figari
    • 3
  • Alessandro Teta
    • 4
  1. 1.Dipartimento di MatematicaUniversitá di Roma “La Sapienza”RomeItaly
  2. 2.S.I.S.S.ATriesteItaly
  3. 3.Dipartimento di Scienze FisicheSezione I.N.F.N. di Napoli, Università “Federico II”NaplesItaly
  4. 4.Dipartimento di Matematica Pura ed ApplicataUniversità di L’AquilaL’AquilaItaly

Personalised recommendations