Annales Henri Poincaré

, Volume 11, Issue 4, pp 565–584 | Cite as

Topological Graph Polynomials in Colored Group Field Theory

Article

Abstract

In this paper, we analyze the open Feynman graphs of the Colored Group Field Theory introduced in Gurau (Colored group field theory, arXiv:0907.2582 [hep-th]). We define the boundary graph \({\mathcal{G}_{\partial}}\) of an open graph \({\mathcal{G}}\) and prove it is a cellular complex. Using this structure we generalize the topological (Bollobás–Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gurau, R.: Colored group field theory. arXiv:0907.2582 [hep-th]Google Scholar
  2. 2.
    Nakanishi N.: Graph Theory and Feynman Integrals. Gordon and Breach, New York (1970)Google Scholar
  3. 3.
    Itzykson C., Zuber J.-B.: Quantum Field Theory. McGraw and Hill, New York (1980)Google Scholar
  4. 4.
    David F.: A model of random surfaces with nontrivial critical behavior. Nucl. Phys. B 257, 543 (1985)CrossRefADSGoogle Scholar
  5. 5.
    Ginsparg, P.: Matrix models of 2-d gravity. arXiv:hep-th/9112013Google Scholar
  6. 6.
    Gross M.: Tensor models and simplicial quantum gravity in > 2-D. Nucl. Phys. Proc. Suppl. 25A, 144–149 (1992)MATHCrossRefADSGoogle Scholar
  7. 7.
    Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Connes A.: Noncommutative Geometry. Academic Press Inc., San Diego (1994)MATHGoogle Scholar
  9. 9.
    Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977 (2001) arXiv:hep-th/0106048CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Grosse H., Wulkenhaar R.: Renormalization of \({\phi^{4}}\)-theory on noncommutative \({\mathbb{R}^4}\) in the matrix base. Commun. Math. Phys. 256(2), 305 (2005) arXiv:hep-th/0401128MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Grosse H., Wulkenhaar R.: Power-counting theorem for non-local matrix models and renormalization. Commun. Math. Phys. 254(1), 91 (2005) arXiv:hep-th/0305066MATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Rivasseau V., Vignes-Tourneret F., Wulkenhaar R.: Renormalization of noncommutative \({\phi^4}\)-theory by multi-scale analysis. Commun. Math. Phys. 262, 565 (2006) arXiv:hep-th/0501036MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F.: Renormalization of non-commutative \({\phi^4_4}\) field theory in x space. Commun. Math. Phys. 267(2), 515 (2006) arXiv:hep-th/0512271MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Gurau R., Magnen J., Rivasseau V., Tanasa A.: A translation-invariant renormalizable non-commutative scalar model. Commun. Math. Phys. 287, 275 (2009) arXiv:0802.0791 [math-ph]MATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    ’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Grosse H., Wulkenhaar R.: The beta-function in duality-covariant noncommutative \({\phi^{4}}\)-theory. Eur. Phys. J. C35, 277 (2004) arXiv:hep-th/0402093MathSciNetADSGoogle Scholar
  17. 17.
    Disertori M., Rivasseau V.: Two and three loops beta function of non commutative phi(4)**4 theory. Eur. Phys. J. C 50, 661 (2007) arXiv:hep-th/0610224CrossRefADSGoogle Scholar
  18. 18.
    Disertori M., Gurau R., Magnen J., Rivasseau V.: Vanishing of beta function of non commutative phi(4)**4 theory to all orders. Phys. Lett. B 649, 95 (2007) arXiv:hep-th/0612251CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Gurau R., Rosten O.J.: Wilsonian renormalization of noncommutative scalar field theory. JHEP 0907, 064 (2009) arXiv:0902.4888 [hep-th]CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Geloun J.B., Gurau R., Rivasseau V.: Vanishing beta function for Grosse-Wulkenhaar model in a magnetic field. Phys. Lett. B 671, 284 (2009) arXiv:0805.4362 [hep-th]CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Boulatov D.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629–1646 (1992) arXiv:hep-th/9202074MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Freidel L.: Group field theory: an overview. Int. J. Phys. 44, 1769–1783 (2005) arXiv:hep-th/0505016MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Oriti, D.: Quantum Gravity. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Birkhauser, Basel (2007). arXiv:gr-qc/0512103Google Scholar
  24. 24.
    De Pietri R., Petronio C.: Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. J. Math. Phys. 41, 6671–6688 (2000) arXiv:gr-qc/0004045MATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Barrett, J., Nash-Guzman, I.: arXiv:0803.3319 (gr-qc)Google Scholar
  26. 26.
    Engle J., Pereira R., Rovelli C.: The loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett. 99, 161301 (2007) arXiv:0705.2388CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Engle J., Pereira R., Rovelli C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251 (2008) arXiv:0708.1236 [gr-qc]MATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Livine E.R., Speziale S.: A new spinfoam vertex for quantum gravity. Phys. Rev. D 76, 084028 (2007) arXiv:0705.0674 [gr-qc]CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Freidel L., Krasnov K.: A new spin foam model for 4d gravity. Class. Quant. Grav. 25, 125018 (2008) arXiv:0708.1595 [gr-qc]CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Conrady F., Freidel L.: On the semiclassical limit of 4d spin foam models. Phys. Rev. D 78, 104023 (2008) arXiv:0809.2280 [gr-qc]CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    Bonzom V., Livine E.R., Smerlak M., Speziale S.: Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model. Nucl. Phys. B 804, 507 (2008) arXiv:0802.3983 [gr-qc]MATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Freidel L., Gurau R., Oriti D.: Group field theory renormalization—the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009) arXiv: 0905.3772 [hep-th]CrossRefADSGoogle Scholar
  33. 33.
    Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: arXiv:0906.5477 [hep-th]Google Scholar
  34. 34.
    Adbesselam, A.: On the volume conjecture for classical spin networks. arXiv: 0904.1734[math.GT]Google Scholar
  35. 35.
    Geloun, J.B., Magnen, J., Rivasseau, V.: Bosonic Colored Group Field Theory. arXiv:0911.1719 [hep-th]Google Scholar
  36. 36.
    Kirchhoff G.: Uber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme gefürht wird. Ann. Phys. Chem. 72, 497–508 (1847)CrossRefADSGoogle Scholar
  37. 37.
    Tutte W.T.: Graph Theory. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  38. 38.
    ‘t Hooft G., Veltman M.: Regularization and renormalization of gauge fields. Nucl. Phys. B44(1), 189–213 (1972)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Crapo H.H.: The Tutte polynomial. Aequationes Mathematicae 3, 211–229 (1969)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Sokal, A.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids, Surveys in combinatorics 2005, pp. 173–226. London Math. Soc. Lecture Note Ser., vol. 327. Cambridge University Press, Cambridge (2005). arXiv:math/0503607Google Scholar
  41. 41.
    Jackson, B., Procacci, A., Sokal, A.D.: Complex zero-free regions at large |q| for multivariate Tutte polynomials (alias Potts-model partition functions) with general complex edge weights. arXiv:0810.4703v1 [math.CO]Google Scholar
  42. 42.
    Bollobás B., Riordan O.: A polynomial invariant of graphs on orientable surfaces. Proc. Lond. Math. Soc. 83, 513–531 (2001)MATHCrossRefGoogle Scholar
  43. 43.
    Bollobás B., Riordan O.: A polynomial of graphs on surfaces. Math. Ann. 323, 81–96 (2002)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Ellis-Monaghan, J., Merino, C.: Graph polynomials and their applications. I. The Tutte polynomial. arXiv:0803.3079Google Scholar
  45. 45.
    Ellis-Monaghan, J., Merino, C.: Graph polynomials and their applications. II. Interrelations and interpretations. arXiv:0806.4699Google Scholar
  46. 46.
    Gurau R., Rivasseau V.: Parametric representation of noncommutative field theory. Commun. Math. Phys. 272, 811 (2007) arXiv:math-ph/0606030MATHCrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Rivasseau V., Tanasa A.: Parametric representation of ‘critical’ noncommutative QFT models. Commun. Math. Phys. 279, 355 (2008) arXiv:math-ph/0701034MATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Tanasa, A.: Parametric representation of a translation-invariant renormalizable noncommutative model. arXiv:0807.2779 [math-ph]Google Scholar
  49. 49.
    Krajewski, T., Rivasseau, V., Tanasa, A., Wang, Z.: Topological Graph Polynomials and Quantum Field Theory. Part I. Heat Kernel Theories. arXiv:0811.0186 [math-ph]Google Scholar
  50. 50.
    Bollobás B., Riordan O.: A Tutte polynomial for coloured graphs. Combin. Probab. Comput. 8, 45–93 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations