Annales Henri Poincaré

, 10:1027 | Cite as

Topological Features of Massive Bosons on Two-Dimensional Einstein Space–Time

  • Romeo Brunetti
  • Lorenzo Franceschini
  • Valter Moretti


In this paper, we tackle the problem of constructing explicit examples of topological cocycles of Roberts’ net cohomology, as defined abstractly by Brunetti and Ruzzi. We consider the simple case of massive bosonic quantum field theory on the two-dimensional Einstein cylinder. After deriving some crucial results of the algebraic framework of quantization, we address the problem of the construction of the topological cocycles. All constructed cocycles lead to unitarily equivalent representations of the fundamental group of the circle (seen as a diffeomorphic image of all possible Cauchy surfaces). The construction is carried out using only Cauchy data and related net of local algebras on the circle.


  1. 1.
    Araki H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  2. 2.
    Araki H.: Von Neumann algebras of local observables for free scalar field. J. Math. Phys. 5, 1–13 (1964)CrossRefMathSciNetADSMATHGoogle Scholar
  3. 3.
    Araki H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys. 4, 1343–1362 (1963)CrossRefMathSciNetADSMATHGoogle Scholar
  4. 4.
    Borchers H.J.: A remark on a Theorem of B. Misra. Commun. Math. Phys. 4, 315–323 (1967)CrossRefMathSciNetADSMATHGoogle Scholar
  5. 5.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, Berlin (1996)Google Scholar
  6. 6.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2. Springer, Berlin (1996)Google Scholar
  7. 7.
    Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)CrossRefMathSciNetADSMATHGoogle Scholar
  8. 8.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle—a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)MathSciNetADSMATHGoogle Scholar
  9. 9.
    Brunetti R., Guido D., Longo R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156, 201–219 (1993)CrossRefMathSciNetADSMATHGoogle Scholar
  10. 10.
    Brunetti R., Ruzzi G.: Superselection sectors and general covariance. I. Commun. Math. Phys. 270, 69–108 (2007)CrossRefMathSciNetADSMATHGoogle Scholar
  11. 11.
    Brunetti, R., Ruzzi, G.: Quantum charges and spacetime topology: the emergence of new superselection sectors. Commun. Math. Phys. (2008, in press). doi:10.1007/s00220-008-0671-6
  12. 12.
    Buchholz D., Schlemmer J.: Local temperature in curved spacetime. Class. Quantum Gravity 24, F25–F31 (2007)CrossRefMathSciNetADSMATHGoogle Scholar
  13. 13.
    Buchholz D., Dreyer O., Florig M., Summers S.J.: Geometric modular action and spacetime symmetry groups. Rev. Math. Phys. 12, 475–560 (2000)MathSciNetMATHGoogle Scholar
  14. 14.
    Buchholz D., Wichmann E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)CrossRefMathSciNetADSMATHGoogle Scholar
  15. 15.
    Chernoff P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Ciolli, F.: Massless scalar free field in 1+1 dimensions. I: Weyl algebras products and superselection sectors. arXiv:math-ph/0511064v3 (2009)Google Scholar
  17. 17.
    Ciolli, F.: Massless scalar free field in 1 + 1 dimensions. II: Net cohomology and completeness of superselection sectors. arXiv:0811.4673v1 (2008)Google Scholar
  18. 18.
    Cordes H.O.: Spectral Theory of Linear Differential Operators and Comparison Algebras. Lecture Notes Series, vol. 76. Cambridge University Press, London (1987)Google Scholar
  19. 19.
    D’Antoni C., Longo R., Radulescu F.: Conformal nets, maximal temperature and models from free probability. J. Operator Theory 45, 195–208 (2001)MathSciNetMATHGoogle Scholar
  20. 20.
    Dappiaggi C., Moretti V., Pinamonti N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349–415 (2006)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Dappiaggi C., Moretti V., Pinamonti N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129–1161 (2009)CrossRefMathSciNetADSMATHGoogle Scholar
  22. 22.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. II. Commun. Math. Phys. 35, 49–85 (1974)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)CrossRefMathSciNetADSMATHGoogle Scholar
  25. 25.
    Driessler W.: Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys. 70, 213–220 (1979)CrossRefMathSciNetADSMATHGoogle Scholar
  26. 26.
    Fewster C.: Quantum energy inequalities and stability conditions in quantum field theory. Rigorous quantum field theory. Progr. Math. 251, 95–111 (2007)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Fewster C.: Quantum energy inequalities and local covariance. II. Categorical formulation. Gen. Relativ. Gravit. 39, 1855–1890 (2007)CrossRefMathSciNetADSMATHGoogle Scholar
  28. 28.
    Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: The Algebraic Theory of Superselection Sectors (Palermo, 1989), 379–387, World Scientific Publications, River Edge (1990)Google Scholar
  29. 29.
    Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. II. Geometric aspects and conformal covariance. Rev. Math. Phys. Special Issue 113–157 (1992)Google Scholar
  30. 30.
    Guido D., Longo R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148, 521–551 (1992)CrossRefMathSciNetADSMATHGoogle Scholar
  31. 31.
    Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13, 125–198 (2001)CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    Haag R.: Local Quantum Physics, 2nd Revised edn. Springer, Berlin (1996)MATHGoogle Scholar
  33. 33.
    Hollands S.: The Operator product expansion for perturbative quantum field theory in curved spacetime. Commun. Math. Phys. 273, 1–36 (2007)CrossRefMathSciNetADSMATHGoogle Scholar
  34. 34.
    Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001)CrossRefMathSciNetADSMATHGoogle Scholar
  35. 35.
    Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum field in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002)CrossRefMathSciNetADSMATHGoogle Scholar
  36. 36.
    Hollands S., Wald R.M.: On the renormalization group in curved spacetime. Commun. Math. Phys. 237, 123–160 (2003)MathSciNetADSMATHGoogle Scholar
  37. 37.
    Hollands S., Wald R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227–311 (2005)CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    Hollands, S., Wald, R.M.: Axiomatic quantum field theory in curved spacetime. Available at arXiv:0803.2003 [gr-qc]Google Scholar
  39. 39.
    Kay B.S.: Linear spin-zero quantum fields in external gravitational and scalar fields. Commun. Math. Phys. 62, 55–70 (1978)CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Kay B.S., Wald R.M.: Theorem on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space–times with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991)CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. I, II. Wiley, New York (1996)Google Scholar
  42. 42.
    Leyland, P., Roberts, J., Testard, D.: Duality for quantum free fields. CPT-78/P-1016, July 1978. Available at
  43. 43.
    Moretti V.: Comments on the stress-energy tensor operator in curved spacetime. Commun. Math. Phys. 232, 189–201 (2003)CrossRefMathSciNetADSMATHGoogle Scholar
  44. 44.
    Moretti V.: Quantum out-states holographically induced by asymptotic flatness: invariance under spacetime symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279, 31–75 (2008)CrossRefMathSciNetADSMATHGoogle Scholar
  45. 45.
    Müger M.: Superselection structure of massive quantum field theories in 1 + 1 dimensions. Rev. Math. Phys. 10, 1147–1170 (1998)CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Osterwalder K.: Duality for free Bose fields. Commun. Math. Phys. 29, 1–14 (1973)CrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Roberts J.E.: Local cohomology and superselection structure. Commun. Math. Phys. 51, 107–119 (1976)CrossRefADSMATHGoogle Scholar
  48. 48.
    Roberts J.E.: More lectures on algebraic quantum field theory. In: Doplicher, S., Longo, R. (eds) Noncommutative Geometry, pp. 263–342. Lecture Notes in Mathematics, vol 1831, Springer (2004)Google Scholar
  49. 49.
    Reed M., Simon B.: Methods of Modern Mathematical Phisics. II. Fourier Analysis, Self-Adjointness. Academic Press, Boston (1975)Google Scholar
  50. 50.
    Reeh H., Schlieder S.: Uber den Zerfall der Feldoperatoralgebra im Falle einer Vakuumentartung. Nuovo Cimento (10) 26, 32–42 (1962)CrossRefMathSciNetMATHGoogle Scholar
  51. 51.
    Reeh H., Schlieder S.: Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Felden. Nuovo Cimento (10) 22, 1051–1068 (1961)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Ruzzi G.: Homotopy of posets, net-cohomology and superselection sectors in globally hyperbolic space–times. Rev. Math. Phys. 17, 1021–1070 (2005)CrossRefMathSciNetMATHGoogle Scholar
  53. 53.
    Schlemmer, J., Verch, R.: Local thermal equilibrium states and quantum energy inequalities. Available at arXiv:0802.2151v1[gr-qc]Google Scholar
  54. 54.
    Strohmaier A.: The Reeh–Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)CrossRefMathSciNetADSMATHGoogle Scholar
  55. 55.
    Takesaki, M.: Theory of Operator Algebras, vol. I–III. Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-Commutative Geometry, vol. 5, Springer, Berlin (2002)Google Scholar
  56. 56.
    Verch R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. Commun. Math. Phys. 160, 507–536 (1994)CrossRefMathSciNetADSMATHGoogle Scholar
  57. 57.
    Verch R.: Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime. Rev. Math. Phys. 9, 635–674 (1997)CrossRefMathSciNetMATHGoogle Scholar
  58. 58.
    Wald R.M.: On the Euclidean approach to quantum field theory in curved spacetime. Commun. Math. Phys. 70, 221–242 (1979)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Birkhäuser Verlag AG, Basel/Switzerland 2009

Authors and Affiliations

  • Romeo Brunetti
    • 1
    • 2
  • Lorenzo Franceschini
    • 1
  • Valter Moretti
    • 1
    • 2
    • 3
  1. 1.Dipartimento di MatematicaUniversità di TrentoTrentoItaly
  2. 2.Istituto Nazionale di Fisica NucleareGruppo Collegato di TrentoTrentoItaly
  3. 3.Istituto Nazionale di Alta Matematicaunità locale di TrentoTrentoItaly

Personalised recommendations