Annales Henri Poincaré

, Volume 7, Issue 4, pp 791–807 | Cite as

Topological Factors Derived from Bohmian Mechanics

  • Detlef Dürr
  • Sheldon Goldstein
  • James Taylor
  • Roderich Tumulka
  • Nino Zanghì
Original Paper

Abstract

We derive for Bohmian mechanics topological factors for quantum systems with a multiply-connected configuration space $$ \mathcal{Q}. $$ These include nonabelian factors corresponding to what we call holonomy-twisted representations of the fundamental group of $$ \mathcal{Q}. $$ We employ wave functions on the universal covering space of $$ \mathcal{Q}. $$ As a byproduct of our analysis, we obtain an explanation, within the framework of Bohmian mechanics, of the fact that the wave function of a system of identical particles is either symmetric or anti-symmetric.

Communicated by Yosi Avron

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2006

Authors and Affiliations

  • Detlef Dürr
    • 1
  • Sheldon Goldstein
    • 2
  • James Taylor
    • 3
  • Roderich Tumulka
    • 4
  • Nino Zanghì
    • 5
  1. 1.Mathematisches Institut der Universität MünchenMünchenGermany
  2. 2.Departments of Mathematics, Physics and PhilosophyThe State University of New JerseyPiscatawayUSA
  3. 3.Center for Talented YouthJohns Hopkins UniversityBaltimoreUSA
  4. 4.Mathematisches InstitutEberhard-Karls-UniversitätTübingenGermany
  5. 5.Dipartimento di Fisicadell’Università di Genova and INFN sezione di GenovaGenovaItaly

Personalised recommendations