Advertisement

Journal of Geometry

, Volume 108, Issue 1, pp 45–60 | Cite as

Synthetic foundations of cevian geometry, I: fixed points of affine maps

  • Igor Minevich
  • Patrick MortonEmail author
Article

Abstract

We give synthetic proofs of new results in triangle geometry, focusing especially on fixed points of certain affine maps which are defined in terms of the cevian triangles of a point P and its isotomic conjugate P′, with respect to a given triangle ABC. We give a synthetic proof of Grinberg’s formula for the cyclocevian map in terms of the isotomic and isogonal maps, and show that the complement Q of the isotomic conjugate P′ has many interesting properties. If T P is the affine map taking ABC to the cevian triangle DEF for P, it is shown that Q is the unique ordinary fixed point of T P when P does not lie on the sides of triangle ABC, its anticomplementary triangle, or the Steiner circumellipse of ABC. This paper forms the foundation for several more papers to follow, in which the conic on the 5 points A, B, C, P, Q is studied and its center is characterized as a fixed point of the map \({\lambda = T_{P'} \circ T_P^{-1}}\).

Mathematics Subject Classification

51A05 51A20 51M99 51N10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altshiller-Court, N.: College Geometry, An Introduction to the Modern Geometry of the Triangle and the Circle. Barnes and Noble, New York (1952). Reprint published by DoverGoogle Scholar
  2. 2.
    Coxeter, H.S.M.: Projective Geometry, 2nd edition, Springer, New York (1987)Google Scholar
  3. 3.
    Ehrmann, J-P.: Hyacinthos Message #959. http://tech.groups.yahoo.com/group/Hyacinthos
  4. 4.
    Eves, H.: College Geometry. Jones and Bartlett Publishers, Boston (1995)Google Scholar
  5. 5.
    Grinberg, D.: Hyacinthos Message #6423. http://tech.groups.yahoo.com/group/Hyacinthos
  6. 6.
    Grinberg, D.: Hyacinthos Message #6427 Google Scholar
  7. 7.
    Grinberg, D.: Hyacinthos Message #6431 Google Scholar
  8. 8.
    Grinberg, D.: Hyacinthos Message #6453 Google Scholar
  9. 9.
    Grinberg, D.: Hyacinthos Message #9285 Google Scholar
  10. 10.
    Minevich, I., Morton, P.: Synthetic foundations of cevian geometry. II: the center of the cevian conic. (2015). arXiv:1505.05381
  11. 11.
    Minevich, I., Morton, P.: Synthetic foundations of cevian geometry. III: the generalized orthocenter. (2015). arXiv:1506.06253
  12. 12.
    Morton, P.: Affine maps and Feuerbach’s theorem. Preprint, IUPUI Math. Dept. Preprint Series pr09-05 (2009). http://math.iupui.edu/research/research-preprints
  13. 13.
    Wolfram, S.: MathWorld. http://mathworld.wolfram.com
  14. 14.
    Yiu, P.: Introduction to the geometry of the triangle. (2002). At http://www.math.fau.edu/Yiu/GeometryNotes020402.ps
  15. 15.
    Yiu, P.: Hyacinthos Message #1790. http://tech.groups.yahoo.com/group/Hyacinthos
  16. 16.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Maloney HallBoston CollegeChestnut HillUSA
  2. 2.Department of Mathematical SciencesIndiana University-Purdue University at Indianapolis (IUPUI)IndianapolisUSA

Personalised recommendations