Journal of Geometry

, Volume 106, Issue 3, pp 483–501 | Cite as

Stability of the surface area preserving mean curvature flow in Euclidean space

Article

Abstract

The surface area preserving mean curvature flow is a mean curvature type flow with a global forcing term to keep the hypersurface area fixed. By iteration techniques, we show that the surface area preserving mean curvature flow in Euclidean space exists for all time and converges exponentially to a round sphere, if initially the L2-norm of the traceless second fundamental form is small (but the initial hypersurface is not necessarily convex).

Mathematics Subject Classification

Primary 53C44 Secondary 58J35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, T.: Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics. Springer, Berlin (1998)Google Scholar
  2. 2.
    Chen B.: On a theorem of Fenchel-Borsuk-Willmore-Chern-Lashof. Math. Ann. 194, 19–26 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chow, B., Lu, P. Ni, L.: Hamilton’s Ricci flow. Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence (2006)Google Scholar
  4. 4.
    Colding, T.H., Minicozzi, W.P. II.: A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, (2011)Google Scholar
  5. 5.
    Escher J., Simonett G.: The volume preserving mean curvature flow near spheres. Proc. Amer. Math. Soc. 126(9), 2789–2796 (1998)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)MATHGoogle Scholar
  7. 7.
    Huisken G., Sinestrari C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differ. Equ. 8(1), 1–14 (1999)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)Google Scholar
  9. 9.
    Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)Google Scholar
  10. 10.
    Li H: The volume-preserving mean curvature flow in Euclidean space. Pacific J. Math. 243(2), 331–355 (2009)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lin, L., Sesum, N.: Blow-up of the mean curvature at the first singular time of the mean curvature flow, preprint. (2013). arXiv:1302.1133
  12. 12.
    McCoy, J.: The surface area preserving mean curvature flow. Asian J. Math. 7(1), 7–30 (2003)Google Scholar
  13. 13.
    McCoy, J.: The mixed volume preserving mean curvature flow. Math. Z. 246(1–2), 155–166 (2004)Google Scholar
  14. 14.
    Pihan, D.: A length preserving geometric heat flow for curves, thesis, University of Melbourne (1998)Google Scholar
  15. 15.
    Topping, P.: Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv. 83(3), 539–546 (2008)Google Scholar
  16. 16.
    Ye, R.: Ricci flow, Einstein metrics and space forms. Trans. Am. Math. Soc. 338(2), 871–896 (1993)Google Scholar

Copyright information

© Springer Basel AG 2015

Authors and Affiliations

  1. 1.Department of MathematicsThe City University of New YorkStaten IslandUSA
  2. 2.The Graduate CenterThe City University of New YorkNew YorkUSA
  3. 3.Mathematics DepartmentUniversity of California, Santa CruzSanta CruzUSA

Personalised recommendations