Journal of Geometry

, Volume 106, Issue 2, pp 321–339 | Cite as

Offsets, conchoids and pedal surfaces

  • Martin Peternell
  • Lukas Gotthart
  • Juana Sendra
  • J. Rafael Sendra
Article

Abstract

We discuss three geometric constructions and their relations, namely the offset, the conchoid and the pedal construction. The offset surface Fd of a given surface F is the set of points at fixed normal distance d of F. The conchoid surface Gd of a given surface G is obtained by increasing the radius function by d with respect to a given reference point O. There is a nice relation between offsets and conchoids: The pedal surfaces of a family of offset surfaces are a family of conchoid surfaces. Since this relation is birational, a family of rational offset surfaces corresponds to a family of rational conchoid surfaces and vice versa. We present theoretical principles of this mapping and apply it to ruled surfaces and quadrics. Since these surfaces have rational offsets and conchoids, their pedal and inverse pedal surfaces are new classes of rational conchoid surfaces and rational offset surfaces.

Keywords

Offset surfaces conchoid surfaces pedal surfaces inverse pedal surfaces Darboux and Dupin cyclides 

Mathematics Subject Classification

51M 51N 53A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albano, A., Roggero, M.: Conchoidal transform of two plane curves. Appl. Algebra Eng. Commun. Comput. 21, 309–328 (2010)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Arrondo, E., Sendra, J., Sendra, J.R.: Parametric generalized offsets to hypersurfaces. J. Symb. Comput. 23, 267–285 (1997)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Dietz, R., Hoschek, J., Jüttler, B.: An algebraic approach to curves and surfaces on the sphere and other quadrics. Comput. Aided Geom. Design 10, 211–229 (1993)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Farouki, R.T.: Pythagorean–Hodograph curves. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam (2002)Google Scholar
  5. 5.
    Farouki, R.T.: Pythagorean–Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)Google Scholar
  6. 6.
    Gruber, D., Peternell, M.: Conchoid surfaces of quadrics. J. Symb. Comput. 59, 36–53 (2013)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hilton, H.: Plane Algebraic Curves. Clarendon Press, Oxford (1920)Google Scholar
  8. 8.
    Kerrick, A.H.: The limacon of Pascal as a basis for computed and graphic methods of determining astronomic positions. J. Inst. Navig. 6, 310–316 (1959)CrossRefGoogle Scholar
  9. 9.
    Krasauskas, R., Peternell, M.: Rational offset surfaces and their modeling applications. In: Emiris, I.Z., Sottile, F., Theobald, Th. (eds.) IMA Volume 151: Nonlinear Computational Geometry, pp. 109–136 (2010)Google Scholar
  10. 10.
    Lin, W., Yu, Z., Yuang, E., Luk, K.: Conchoid of nicomedes and limacon of pascal as electrode of static field and a waveguide of high frecuency wave. PIER 30, 273–284 (2001)CrossRefGoogle Scholar
  11. 11.
    Loria, G.: Spezielle Algebraische und Transzendente Ebene Kurven: Theorie und Geschichte. Teubner, Leipzig (1911)Google Scholar
  12. 12.
    Peternell, M., Pottmann, H.: A Laguerre geometric approach to rational offsets. Comput. Aided Geom. Des. 15, 223–249 (1998)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Peternell, M., Gruber, D., Sendra, J.: Conchoid surfaces of rational ruled surfaces. Comput. Aided Geom. Des. 28, 427–435 (2011)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Pottmann, H.: Rational curves and surfaces with rational offsets. Comput. Aided Geom. Des. 12, 175–192 (1995)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Pottmann, H., Shi, L., Skopenkov, M.: Darboux cyclides and webs from circles. Comput. Aided Geom. Des. 29, 77–97 (2012)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Schicho, J.: Proper parametrization of real tubular surfaces. J. Symb. Comput. 30, 583–593 (2000)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Sendra, J.R., Sendra, J.: Algebraic analysis of offsets to hypersurfaces. Math. Z. 234, 697–719 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sendra, J.R., Sendra, J.: An algebraic analysis of conchoids to algebraic curves. Appl. Algebra Eng. Commun. Comput. 19, 285–308 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sendra, J., Sendra, J.R.: Rational parametrization of conchoids to algebraic curves. Appl. Algebra Eng. Commun. Comput. 21, 413–428 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sendra, J.R., Winkler, F., Pérez-Diaz, S.: Rational Algebraic Curves: A Computer Algebra Approach. In: Series Algorithms and Computation in Mathematics, Vol. 22. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Szmulowicz, F.: Conchoid of Nicomedes from reflections and refractions in a cone. Am. J. Phys. 64, 467–471 (1996)CrossRefGoogle Scholar
  22. 22.
    Vršek, J., Lávicka, M.: Exploring hypersurfaces with offset-like convolutions. Comput. Aided Geom. Des. 29, 676–690 (2012)MATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2014

Authors and Affiliations

  • Martin Peternell
    • 1
  • Lukas Gotthart
    • 1
  • Juana Sendra
    • 2
  • J. Rafael Sendra
    • 3
  1. 1.University of Technology ViennaWienAustria
  2. 2.Dpto. Matemática Aplicada a la I.T. de Telecomunicación CITSEMUniversidad Politécnica de MadridMadridSpain
  3. 3.Dpto. de Fisica y MatemáticasUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations