Advertisement

Journal of Geometry

, Volume 105, Issue 2, pp 369–389 | Cite as

Volumes of trajectory-balls for Kähler magnetic fields

  • Toshiaki AdachiEmail author
  • Pengfei Bai
Article
  • 67 Downloads

Abstract

In this paper, applying comparison theorems on normal magnetic Jacobi fields we estimate volumes of trajectory-balls for Kähler magnetic fields under some assumptions on sectional curvatures or Ricci curvatures of the underlying Kähler manifold.

Mathematics Subject Classification (2010)

53C22 53C20 

Keywords

Kähler magnetic fields magnetic exponential maps trajectory-balls volume elements magnetic Jacobi fields comparison theorems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi T.: Kähler magnetic flows on a manifold of constant holomorphic sectional curvature. Tokyo J. Math. 18, 473–483 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Adachi T.: A comparison theorem for magnetic Jacobi fields. Proc. Edinb. Math. Soc. 40, 293–308 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Adachi, T.: Magnetic Jacobi fields for Kähler magnetic fields. In: Adachi, T. et al., (eds.) Recent Progress in Differential Geometry and its Related Fields, pp. 41–53. World Scientific, Singapore (2011)Google Scholar
  4. 4.
    Adachi T.: A theorem of Hadamard-Cartan type for Kähler magnetic fields. J. Math. Soc. Japan 64, 969–984 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bishop R.L., Critenden R.: Geometry of Manifolds. Academic Press, (1964)zbMATHGoogle Scholar
  6. 6.
    Comtet A.: On the Landou levels on the hyperbolic plane. Ann. Phys. 173, 185–209 (1987)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Gouda N.: The theorem of E. Hopf under uniform magnetic fields. J. Math. Soc. Japan 50, 767– (1998)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Sakai, T.: Riemannian Geometry. Shokabo (1992) (in Japanese) and Translations Math. Monographs vol. 149, A.M.S. (1996)Google Scholar
  9. 9.
    Sunada T.: Magnetic flows on a Riemann surface. Proc. KAIST Math. Workshop 8, 93–108 (1993)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsNagoya Institute of TechnologyNagoyaJapan
  2. 2.Division of Mathematics and Mathematical Science, Graduate School of EngineeringNagoya Institute of TechnologyGokiso, NagoyaJapan

Personalised recommendations