Journal of Geometry

, Volume 105, Issue 3, pp 577–599

Planar nearrings on the Euclidean plane

  • Wen-Fong Ke
  • Hubert Kiechle
  • Günter Pilz
  • Gerhard Wendt
Article
  • 145 Downloads

Abstract

Planar near-rings are generalized rings which can serve as coordinate domains for geometric structures in which each pair of nonparallel lines has a unique point of intersection. It is known that all planar nearrings can be constructed from regular groups of automorphisms of groups which can be viewed as the “action groups” of the planar nearring. In this article, we study planar nearrings whose additive group is \({(\mathbb{R}^n,+)}\), in particular, n = 1 and 2. It is natural to study topological planar nearrings in this context, following ideas of the late Kenneth D. Magill, Jr. In the case of n = 1, we characterize all topological planar nearrings by their action groups \({(\mathbb{R}^*, \cdot)}\) or \({(\mathbb{R}^+, \cdot)}\). For n = 2, these action groups and the circle group \({(\mathbb{U}, \cdot)}\) seem to be the most interesting cases, but the last case can be excluded completely. As a consequence, we obtain characterizations of the semi-homogeneous continuous mappings from \({\mathbb{R}^n}\) to \({\mathbb{R}}\) for n = 1 and 2. Such a mapping f enjoys the property that f(f(u)v) = f(u)f(v) for all \({u,v \in \mathbb{R}^n}\). When \({f(\mathbb{R}^n) = \mathbb{R}^+}\), f is a positive homogeneous mapping of degree 1.

Mathematics Subject Classification (2010)

Primary 16Y30 Secondary 16W80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshel M., Clay J.R.: Planar algebraic systems: some geometric interpretations. J. Algebra 10, 166–173 (1968)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Beckman F.S., Quarles D.A. Jr.: On isometries of Euclidean spaces. Proc. Am. Math. Soc. 4, 810–815 (1953)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Betsch, G., Clay, J.R.: Block designs from Frobenius groups and planar near-rings. In: Proceedings of Conference Finite Groups (Park City, Utah), pp. 473–502. Academic Press (1976)Google Scholar
  4. 4.
    Clay J.R.: Generating balanced incomplete block designs from planar near-rings. J. Algebra 22, 319–331 (1972)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Clay J.R.: Applications of planar nearrings to geometry and combinatorics. Resultate der Mathematisk 12, 71–85 (1987)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Clay, J.R.: Circular block designs from planar near-rings. Combinatorics ’86 (Trento, 1986), 95–105, Ann. Discret. Math. 37. North-Holland, Amsterdam (1988)Google Scholar
  7. 7.
    Clay, J.R.: Nearrings: Geneses and Applications, Oxford University Press, Oxford (1992)Google Scholar
  8. 8.
    Clay J.R.: Geometry in fields. Algebra Colloq. 1, 289–306 (1994)MathSciNetMATHGoogle Scholar
  9. 9.
    Clay J.R., Karzel H.J.: Tactical configurations derived from groups having a group of fixed point free automorphisms. J. Geometry 27, 60–68 (1986)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Coxeter H.S.M.: Introduction to Geometry. Wiley, London (1961)MATHGoogle Scholar
  11. 11.
    Dickson, L.E.: On Finite Algebras. Nachr. Gesell. Wissen. Göttingen, pp. 358–393. (The Collected Mathematical Papers of Leonard Eugene Dickson, III Albert, A (ed.), pp. 539–574 (1975) (1905))Google Scholar
  12. 12.
    Ferrero G.: Classificazione e costruzione degli stems p-singolari. Istituto Lombardo Accad. Sci. Lett., Rend. A. 102, 597–613 (1968)MathSciNetMATHGoogle Scholar
  13. 13.
    Ferrero G.: Stems planari e BIB-disegni. Riv. Mat. Univ. Parma 11(2), 79–96 (1970)MathSciNetMATHGoogle Scholar
  14. 14.
    Hales T.C.: The Jordan curve theorem, formally and informally. Am. Math. Monthly 114, 882–894 (2007)MathSciNetMATHGoogle Scholar
  15. 15.
    Kaarli, K.:Near-Rings Without Zero Divisors (Russian). Thesis, Univ. of Tartu (1971)Google Scholar
  16. 16.
    Ke W.-F., Kiechle H.: Combinatorial properties of ring generated circular planar nearrings. J. Combin. A 73, 286–301 (1996)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ke W.-F., Pilz G.F.: Abstract algebra in statistics. J. Algebraic Stat. 1, 6–12 (2010)MathSciNetGoogle Scholar
  18. 18.
    Magill K.D.: Topological nearrings whose additive groups are Euclidean. Monatsh. Math. 119, 281–301 (1995)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Magill, K.D., Jr.: Topological nearrings on the Euclidean plane. Papers on general topology and applications (Slippery Rock, PA, 1993), pp. 140–152 (Ann. New York Acad. Sci. 767, New York Acad. Sci., New York (1995))Google Scholar
  20. 20.
    Modisett, M.:A characterization of the Circularity of Certain Balanced Incomplete Block Designs. Ph. D. dissertation, University of Arizona (1988)Google Scholar
  21. 21.
    Modisett M.: A characterization of the circularity of balanced incomplete block designs. Utilitas Math. 35, 83–94 (1989)MathSciNetMATHGoogle Scholar
  22. 22.
    Pilz, G.: Nearrings, 2nd edn. North Holland/American Elsevier, Amsterdam (1983)Google Scholar
  23. 23.
    Salzmann, H., Grundhöfer, T., Hähl, H., Löwen, R.: The classical fields. Structural features of the real and rational numbers. Encyclopedia of Mathematics and its Applications, vol. 112. Cambridge University Press, Cambridge (2007)Google Scholar
  24. 24.
    Sun H.-M.: Segments in a planar nearring. Discret. Math. 240, 205–217 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Sun H.-M.: PBIB designs and association schemes obtained from finite rings. Discret. Math. 252, 267–277 (2002)CrossRefMATHGoogle Scholar
  26. 26.
    Veblen, O., Wedderburn, J.: Non-Desarguesian and non-Pascalian geometries. Trans. Am. Math. Soc. 8, 379–388 (1907)Google Scholar
  27. 27.
    Veblen, O., Young, J.: Projective Geometry, Ginn and Company, 1910 (1918)Google Scholar
  28. 28.
    Wähling, H.: Theorie der Fastkörper. Thales Verlag, Essen (1987)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Wen-Fong Ke
    • 1
  • Hubert Kiechle
    • 2
  • Günter Pilz
    • 3
  • Gerhard Wendt
    • 3
  1. 1.Department of Mathematics and National Center for Theoretical SciencesNational Cheng Kung UniversityTainanTaiwan
  2. 2.Fachbereich MathematikUniversität HamburgHamburgGermany
  3. 3.Department of AlgebraJohannes Kepler Universität LinzLinzAustria

Personalised recommendations