Journal of Geometry

, Volume 104, Issue 2, pp 229–255 | Cite as

Isoperimetric triangular enclosures with a fixed angle

Article

Abstract

In this paper, we study four variants of the famous isoperimetric problem. Given a set S of n > 2 points in the plane (in general position), we show how to compute in O(n2) time, a triangle with maximum (or minimum) area enclosing S among all enclosing triangles with fixed perimeter and one fixed angle. We also show how to compute in O(n2) time, a triangle with maximum (or minimum) perimeter enclosing S among all enclosing triangles with fixed area and one fixed angle. We also provide an Ω (n log n) lower bound for these problems in the algebraic computation tree model.

Mathematics Subject Classification (2010)

51-04 51N20 

Keywords

Geometric optimization enclosing problems isoperimetric problems computational geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal A., Chang J.-S., Yap C.-K.: Minimum area circumscribing Polygons. Vis. Comput. 1(2), 112–117 (1985)MATHCrossRefGoogle Scholar
  2. 2.
    Barequet G., Bose P., Dickerson M.T., Goodrich M.T.: Optimizing a constrained convex polygonal Annulus. J. Discrete Algorithms 3(1), 1–26 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Barequet B., Dickerson M.T., Scharf Y.: Covering points with a polygon. Comput. Geom. 39(3), 143–162 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: Johnson, D.S. et al., (eds.) Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC 1983), pp. 80–86. ACM, New-York (1983)Google Scholar
  5. 5.
    Bhattacharya, B.K., Mukhopadhyay, A.: On the minimum perimeter triangle enclosing a convex polygon. In: Akiyama, J. et al., (eds.) Proceedings of the Japanese Conference on Discrete and Computational Geometry (JCDCG 2002), pp. 84–96. Springer, Berlin (2003)Google Scholar
  6. 6.
    Bose, P., De Carufel, J.-L.: Isoperimetric triangular enclosure with a fixed angle. In: Proceedings of the 23rd Annual Canadian Conference on Computational Geometry (CCCG 2011), Toronto, pp. 93–98. (available at http://2011.cccg.ca/) (2011)
  7. 7.
    Bose, P., De Carufel, J.-L.: Minimum enclosing area triangle with a fixed angle. Comput. Geom., (2013, in press) (see also arXiv:1009.3006)Google Scholar
  8. 8.
    Bose P., Mora M., Seara C., Sethia S.: On computing enclosing isosceles triangles and related problems. Int. J. Comput. Geom. Appl. 21(1), 303–318 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dummit D.S., Foote R.M.: Abstract algebra, 3rd edn. Wiley, Hoboken (2004)MATHGoogle Scholar
  10. 10.
    Katz, V.J.: A History of Mathematics: an Introduction, 2nd edn. Addison-Wesley, Boston (2009)Google Scholar
  11. 11.
    Megiddo N.: Linear-time algorithms for linear programming in R 3 and related problems. SIAM J. Comput. 12(4), 759–776 (1983)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mitchell J.S., Polishchuk V.: Minimum-perimeter enclosures. Inform. Process. Lett. 107(3–4), 120–124 (2008)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    O’Rourke J.: Finding minimal enclosing boxes. Int. J. Parall. Program. 14(3), 183–199 (1985)MathSciNetMATHGoogle Scholar
  14. 14.
    O’Rourke J., Aggarwal A., Maddila S.R., Baldwin M.: An optimal algorithm for finding minimal enclosing triangles. J. Algorithms 7(2), 258–269 (1986)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Polya, G.: Mathematics and plausible reasoning Vol. I. Induction and analogy in mathematics. Princeton University Press, Princeton (1954)Google Scholar
  16. 16.
    Roy, S., Karmakar, A., Das, S., Nandy, S.C.: Constrained minimum enclosing circle with center on a query line segment. In: Královič, R. et al., (eds.) Proceedings of Mathematical Foundations of Computer Science (MFCS 2006), pp. 765–776. Springer, Berlin (2006)Google Scholar
  17. 17.
    Schwarz, C., Teich, J., Vainshtein, A., Welzl, E., Evans, B.L.: Minimal enclosing parallelogram with application. In: Snoeyink, J., (ed.) Proceedings of the 11th Annual Symposium on Computational Geometry (SCG 1995), pp. C34–C35. ACM, New-York (1995)Google Scholar
  18. 18.
    Toussaint, G.: Solving geometric problems with the rotating calipers. In: Protonotarios, E.N., et al., (eds.) Proceedings of the IEEE Mediterranean Electrotechnical Conference (MELECON 1983), pp. A10.02/1-4. IEEE, New-York (1983)Google Scholar
  19. 19.
    Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H., (ed.) Proceedings of New Results and New Trends in Computer Science (1991), pp. 359–370. Springer, Berlin (1991)Google Scholar
  20. 20.
    Zhou Y., Suri S.: Algorithms for a minimum volume enclosing simplex in three dimensions. SIAM J. Comput. 31(5), 1339–1357 (2002)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations