Journal of Geometry

, Volume 104, Issue 2, pp 213–227 | Cite as

On curves of constant torsion I



We give an explicit construction of a closed curve with constant torsion and everywhere positive curvature. We also discuss the restrictions on closed curves of constant torsion when they are constrained to lie on convex surfaces.

Mathematics Subject Classification (2010)

53A04 53C99 


Constant torsion spherical curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bates, L., Melko, O.M.: On curves of constant torsion II (2013, to appear)Google Scholar
  2. 2.
    Bisztriczky T.: On the four vertex theorem for space curves. J. Geom. 27, 166–174 (1986)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Breuer S., Gottlieb D.: Explicit characterization of spherical curves. Proc. Am. Math. Soc. 27, 126–127 (1971)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Calini A., Ivey T.: Backlund transformations and knots of constant torsion. J. Knot Theory Ramif. 7, 719–746 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cushman R., Bates L.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel (1997)MATHCrossRefGoogle Scholar
  6. 6.
    Darboux, G.: Théorie Generales Des Surfaces, vol. 1, 3rd edn. Chelsea, New York (1972)Google Scholar
  7. 7.
    Eisenhart L.: A Treatise on the Differential Geometry of Curves and Surfaces. Ginn and Company, Boston (1909)Google Scholar
  8. 8.
    Fabry E.: Sur les courbes algébriques à torsion constante. Ann. Sci.Éc. Norm. Supér. (3) 9, 177–196 (1892)MathSciNetMATHGoogle Scholar
  9. 9.
    Fouché M.: Sur les courbes algébriques à torsion constante. Ann. Sci. Éc. Norm. Supér. (3) 7, 335–344 (1890)MATHGoogle Scholar
  10. 10.
    Goetz, A.: Introduction to Differential Geometry. Addison-Wesley, Reading (1970)Google Scholar
  11. 11.
    Guggenheimer H.: Differential Geometry. Dover, New York (1977)MATHGoogle Scholar
  12. 12.
    Kazaras, D., Sterling, I.: An explicit formula for the spherical curves with constant torsion. (2012, preprint)Google Scholar
  13. 13.
    Koenigs G.: Sur la forme des courbes à torsion constante. Ann. Fac. Sci. Toulouse Math. 1(2), 1–8 (1887)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lyon, I.: Sur les courbes a torsion constante. PhD thesis, Faculté des sciences de Paris, Paris (1890)Google Scholar
  15. 15.
    Nuño Ballesteros J.J., Romero Fuster M.C.: A four vertex theorem for strictly convex space curves. J. Geom. 46, 119–126 (1993)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Romero Fuster M.C., Sedyhk V.D.: On the number of singularities, zero curvature points and vertices of a single convex space curve. J. Geom. 52, 168–172 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Saban G.: Nuove caratterizzazioni della sfera. Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei. 25, 457–464 (1958)MathSciNetGoogle Scholar
  18. 18.
    Sedykh V.D.: Four vertices of a convex space curve. Bull. Lond. Math. Soc. 26, 177–180 (1994)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 3, 3rd edn. Publish or Perish, Houston (1999)Google Scholar
  20. 20.
    Stoker J.J.: Differential Geometry, Wiley Classics Series. Wiley, Hoboken (1989)Google Scholar
  21. 21.
    Weiner J.: Closed curves of constant torsion II. Proc. Am. Math. Soc. 67, 306–308 (1977)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wong Y.C.: On an explicit characterization of spherical curves. Proc. Amer. Math. Soc. 34, 239–242 (1972)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CalgaryCalgaryCanada
  2. 2.Dorian Apartments # 109AberdeenUSA

Personalised recommendations