Journal of Geometry

, Volume 103, Issue 1, pp 161–176 | Cite as

On the semidiscrete differential geometry of A-surfaces and K-surfaces

  • Johannes WallnerEmail author


In the category of semidiscrete surfaces with one discrete and one smooth parameter we discuss the asymptotic parametrizations, their Lelieuvre vector fields, and especially the case of constant negative Gaussian curvature. In many aspects these considerations are analogous to the well known purely smooth and purely discrete cases, while in other aspects the semidiscrete case exhibits a different behaviour. One particular example is the derived T-surface, the possibility to define Gaussian curvature via the Lelieuvre normal vector field, and the use of the T-surface’s regression curves in the proof that constant Gaussian curvature is characterized by the Chebyshev property. We further identify an integral of curvatures which satisfies a semidiscrete Hirota equation.

Mathematics Subject Classification

53A05 37K 


Semidiscrete surface Asymptotic surface K-surface pseudosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianchi L.: Lezioni di Geometria Differenziale. Spoerri, Pisa (1902)zbMATHGoogle Scholar
  2. 2.
    Blaschke W.: Vorlesungen über Differentialgeometrie. Springer, Berlin (1923)zbMATHGoogle Scholar
  3. 3.
    Bobenko A., Matthes D., Suris Y.: Discrete and smooth orthogonal systems: C -approximation. Int. Math. Res. Not. 45, 2415–2459 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bobenko A., Matthes D., Suris Y.: Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results. St. Petersburg Math. J. 17, 39–61 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bobenko A., Pinkall U.: Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J. Differ. Geom. 43, 527–611 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bobenko A., Suris Y.: On organizing principles of discrete differential geometry, geometry of spheres. Russ. Math. Surv. 62, 1–43 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bobenko A., Suris Y.: Discrete differential geometry: integrable Structure, vol. 98. American Mathematical Society, Providence (2008)Google Scholar
  8. 8.
    Eisenhart L.P.: A Treatise on the Differential Geometry of Curves and Surfaces. Dover, New York (1960)zbMATHGoogle Scholar
  9. 9.
    Liu Y., Pottmann H., Wallner J., Yang Y.-L., Wang W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graph. 25, 681–689 (2006)CrossRefGoogle Scholar
  10. 10.
    Orfanidis S.J.: Discrete sine-Gordon equations. Phys. Rev. D 18, 3822–3827 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Orfanidis S.J.: Sine-Gordon equation and nonlinear σ model on a lattice. Phys. Rev. D 18, 3828–3832 (1978)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pottmann, H., Schiftner, A., Bo, P., Schmiedhofer, H., Wang, W., Baldassini, N., Wallner, J.: Freeform surfaces from single curved panels. ACM Trans. Graph. 27, article #76 (2008)Google Scholar
  13. 13.
    Pottmann H., Schiftner A., Wallner J.: Geometry of architectural freeform structures. Int. Math. Nachr. 209, 15–28 (2008)Google Scholar
  14. 14.
    Pottmann H., Wallner J.: The focal geometry of circular and conical meshes. Adv. Comp. Math. 29, 249–268 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sauer R.: Parallelogrammgitter als Modelle pseudosphärischer Flächen. Math. Z. 52, 611–622 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Sauer R.: Differenzengeometrie. Springer, Berlin (1970)zbMATHCrossRefGoogle Scholar
  17. 17.
    Wunderlich W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitz. Öst. Ak. Wiss. 160, 41–77 (1951)MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.GrazAustria

Personalised recommendations