Journal of Geometry

, Volume 102, Issue 1–2, pp 27–51

Optimal packings of up to six equal circles on a triangular flat torus

  • William Dickinson
  • Daniel Guillot
  • Anna Keaton
  • Sandi Xhumari
Article

Abstract

For each n between 1 and 6, we prove that a certain arrangement of n equal circles is the unique optimally dense packing on a standard triangular flat torus (the quotient of the plane by the lattice generated by two unit vectors with a 60 angle). The packings of 1, 2, 3, 4 and 6 circles are based on either a toroidal triangular close packing or a toroidal triangular close packing with one circle removed. The packing of 5 circles is irregular. This proves two cases of a conjecture stronger than L. Fejes Toth’s conjecture about the strong solidity of the triangular close packing on the plane.

Mathematics Subject Classification (2010)

Primary 52C15 

Keywords

Equal circle packing flat torus packing graph rigidity theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bárány, I., Dolbilin, N.P.: A stability property of the densest circle packing. Monatsh. Math. 106(2), 107–114 (1988)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bezdek A.: Solid packing of circles in the hyperbolic plane. Studia Sci. Math. Hungar. 14(1–3), 203–207 (1979)MathSciNetMATHGoogle Scholar
  3. 3.
    Bezdek, A., Bezdek, K., Connelly, R.: Finite and uniform stability of sphere packings. Discrete Comput. Geom. 20(1), 111–130 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Connelly, R.: Rigidity and energy. Invent. Math. 66(1), 11–33 (1982)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Connelly R.: Rigid circle and sphere packings. I. Finite packings. Struct. Topol. 14, 43–60 (1988)MathSciNetMATHGoogle Scholar
  6. 6.
    Connelly R.: Rigid circle and sphere packings. II. Infinite packings with finite motion. Struct. Topol. 16, 57–76 (1990)MathSciNetMATHGoogle Scholar
  7. 7.
    Connelly R.: . Eur. J. Combin. 29, 1862–1871 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dickinson, W., Guillot, D., Keaton, A., Xhumari, S.: Optimal packings of up to five equal circles on a square flat torus. Beiträge Zur Algebra Und Geometrie 52, 315–334 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Edmonds, J.: A combinatorial representation for polyhedral surfaces. Not. Am. Math. Soc. 7, 646 (1960)Google Scholar
  10. 10.
    Fejes Tòth L.: Regular Figures. International Series of Monographs on Pure and Applied Mathematics. Macmillan, New York (1964)Google Scholar
  11. 11.
    Fejes Tóth, L.: Solid circle-packings and circle-coverings. Studia Sci. Math. Hungar. 3, 401–409 (1968)MathSciNetMATHGoogle Scholar
  12. 12.
    Goldberg, M.: The packing of equal circles in a square. Math. Mag. 43, 24–30 (1970)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Heppes, A.: Densest circle packing on the flat torus. Period. Math. Hungar. 39, 129–134 (1999)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kocay, W.: Groups & graphs—software for graphs, digraphs, and their automorphism groups. Match 58, 431–443 (2007)MATHGoogle Scholar
  15. 15.
    Kocay, W., Neilson, D., Szypowski, R.: Drawing graphs on the torus. Ars Combin. 59, 259–277 (2001)MathSciNetMATHGoogle Scholar
  16. 16.
    Lubachevsky, B.D., Graham, R.L., Stillinger, F.H.: Patterns and structures in disk packings. Period. Math. Hungar. 34, 123–142 (1997)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Melissen, J.B.M.: Packing and covering with circles. PhD thesis, Universiteit Utrecht, Utrecht (1997)Google Scholar
  18. 18.
    Mull, B.P., Rieper, R.G., White, A.T.: Enumerating 2-cell imbeddings of connected graphs. Proc. Am. Math. Soc. 103, 321–330 (1988)MathSciNetMATHGoogle Scholar
  19. 19.
    Przeworski, A.: Packing disks on a torus. Discrete Comput. Geom. 35, 159–174 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Roth, B., Whiteley,W.: Tensegrity frameworks. Trans. Am. Math. Soc. 265, 419–446 (1981) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Schaer, J., Meir, A.: On a geometric extremum problem. Can. Math. Bull. 8, 21–27 (1965)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Thue A.: Selected mathematical papers. Universitetsforlaget, Oslo (1977)MATHGoogle Scholar
  23. 23.
    White A.T.: Graphs of groups on surfaces. North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (2001)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • William Dickinson
    • 1
  • Daniel Guillot
    • 2
  • Anna Keaton
    • 3
  • Sandi Xhumari
    • 4
  1. 1.Department of MathematicsGrand Valley State UniversityAllendaleUSA
  2. 2.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  3. 3.Department of Mathematical SciencesClemson UniversityClemsonUSA
  4. 4.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations