Journal of Geometry

, Volume 99, Issue 1–2, pp 1–13 | Cite as

The Dehn invariants of the Bricard octahedra

  • Victor Alexandrov


We prove that the Dehn invariants of any Bricard octahedron remain constant during the flex and that the Strong Bellows Conjecture holds true for the Steffen flexible polyhedron.

Mathematics Subject Classification (2010)



Flexible polyhedron Dehn invariant scissors congruent Napier’s analogies spherical trigonometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander R.: Lipschitzian mappings and total mean curvature of polyhedral surfaces. I. Trans. Amer. Math. Soc 288, 661–678 (1985)zbMATHCrossRefGoogle Scholar
  2. 2.
    Berger M.: Geometry. I, II. Springer, Berlin (1987)zbMATHCrossRefGoogle Scholar
  3. 3.
    Boltyanskii V.G.: Hilbert’s third problem. Winston, Washington D.C. (1978)zbMATHGoogle Scholar
  4. 4.
    Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. de Math. (5) 3, 113–148 (1897)Google Scholar
  5. 5.
    Connelly R.: A counterexample to the rigidity conjecture for polyhedra. Publ. Math. IHES 47, 333–338 (1977)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Connelly R.: The rigidity of polyhedral surfaces. Math. Mag 52, 275–283 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Connelly R., Sabitov I., Walz A.: The bellows conjecture. Beitr. Algebra Geom 38, 1–10 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dehn, M.: Über raumgleiche Polyeder. Gött. Nachr. 345–354 (1900)Google Scholar
  9. 9.
    Gluck H.: Almost all simply connected closed surfaces are rigid. In: Glaser, L.C., Rushing, T.B. (eds) Lect. Notes Math 438., pp. 225–239. Springer, Berlin (1975)Google Scholar
  10. 10.
    Jessen B.: The algebra of polyhedra and the Dehn—Sydler theorem. Math. Scand 22, 241–256 (1968)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kuiper, N.H.: Sphères polyédriques flexibles dans E 3, d’après Robert Connelly. In: Séminaire Bourbaki, vol. 1977/78, Exposés 507–524, Lect. Notes Math. 710, pp. 147–168. Springer, Berlin (1979)Google Scholar
  12. 12.
    Lebesgue H.: Octaèdres articulés de Bricard. Enseign. Math. II. Sér 13, 175–185 (1967)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Maksimov I.G.: Nonflexible polyhedra with a small number of vertices. J. Math. Sci., New York 149, 956–970 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sabitov, I.Kh.: Local theory of bendings of surfaces. In: Geometry III, Theory of surfaces, Encycl. Math. Sci. 48, pp. 179–250. Springer, Berlin (1992)Google Scholar
  15. 15.
    Sabitov I.Kh.: The volume of a polyhedron as a function of its metric (in Russian). Fundam. Prikl. Mat 2, 1235–1246 (1996)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Sabitov I.Kh.: The volume as a metric invariant of polyhedra. Discrete Comput. Geom 20, 405–425 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Sabitov, I.Kh.: The volumes of polyhedra (in Russian). Moscow Center for Continuous Mathematical Education, Moscow (2002)Google Scholar
  18. 18.
    Schlenker, J.-M.: La conjecture des soufflets (d’après I. Sabitov). In: Seminaire Bourbaki, vol. 2002/03, Exposes 909–923. Société Mathématique de France, Paris. Astérisque 294, 77–95, Exp. No. 912 (2004)Google Scholar
  19. 19.
    Smart W.M.: Text-book on spherical astronomy, 6th edn. Cambridge University Press, Cambridge (1960)Google Scholar
  20. 20.
    Stachel H. et al.: Flexible octahedra in the hyperbolic space. In: Prékopa, A (eds) Non-Euclidean geometries, János Bolyai memorial volume., pp. 209–225. Springer, New York (2006)Google Scholar
  21. 21.
    Sydler J.P.: Conditions necessaires et suffisantes pour l’équivalence des polyedres de l’espace euclidien à trois dimensions. Comment. Math. Helv 40, 43–80 (1965)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Department of PhysicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations