Existence of Suitable Weak Solutions to the Navier–Stokes Equations for Intermittent Data
- 30 Downloads
Abstract
Local in time weak solutions to the 3D Navier–Stokes are constructed for a class of initial data in \(L^2_\mathrm {loc}\). In contrast to other constructions (e.g. Lemarié-Rieusset in Recent developments in the Navier–Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, vol 431. Chapman & Hall/CRC, Boca Raton, 2002; Kikuchi and Seregin in Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality. Nonlinear equations and spectral theory, American Mathematical Society translations: series 2, vol 220. American Mathematical Society, Providence, pp 141–164, 2007; Kwon and Tsai in Global Navier–Stokes flows for non-decaying initial data with slowly decaying oscillation. arXiv:1811.03249 ), the initial data is not required to be uniformly locally square integrable and, in particular, can exhibit growth in a local \(L^2\) sense. This class of initial data includes vector fields in the critical Morrey space and discretely self-similar vector fields in \(L^2_\mathrm {loc}\).
Mathematics Subject Classification
35Q30 76D05Notes
Acknowledgements
ZB was supported in part by the Simons Foundation, while IK was supported in part by the NSF Grants DMS-1615239 and DMS-1907992.
Compliance with ethical standards
Conflict of interest
The authors have no conflict of interest to report.
References
- 1.Basson, A.: Solutions spatialement homogénes adaptées au sens de Caffarelli, Kohn et Nirenberg des équations de Navier–Stokes, Thèse, Université d’Évry (2006)Google Scholar
- 2.Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators \({\rm div}\) and \({\rm grad}\), Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, Trudy Sem. S. L. Soboleva, no. 1, vol. 1980, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1980, pp. 5–40, 149Google Scholar
- 3.Bradshaw, Z., Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations II. Ann. Henri Poincaré 18(3), 1095–1119 (2017)ADSMathSciNetCrossRefGoogle Scholar
- 4.Bradshaw, Z., Tsai, T.P.: Discretely self-similar solutions to the Navier–Stokes equations with data in \(L_{{\rm loc}}^2\) satisfying the local energy inequality, Analysis & PDE (to appear)Google Scholar
- 5.Bradshaw, Z., Tsai, T.P.: Global existence, regularity, and uniqueness of infinite energy solutions to the Navier–Stokes equations. arXiv:1907.00256
- 6.Constantin, P., Foias, C.: Navier–Stokes equations. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (1988)Google Scholar
- 7.Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)ADSMathSciNetCrossRefGoogle Scholar
- 8.Chae, D., Wolf, J.: Existence of discretely self-similar solutions to the Navier–Stokes equations for initial value in \(L_{{\rm loc}}^2({\mathbb{R}}^3)\). Ann. Inst. H. Poincaré Anal. Non Linéaire 35(4), 1019–1039 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 9.Dascaliuc, R., Grujić, Z.: Energy cascades and flux locality in physical scales of the 3D NSE. Commun. Math. Phys. 305, 199–220 (2011)ADSCrossRefGoogle Scholar
- 10.Escauriaza, L., Seregin, G.A., Šverák, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2), 3–44 (2003)MathSciNetCrossRefGoogle Scholar
- 11.Fernández-Dalgo, P.G., Lemarié-Rieusset, P.G.: Weak solutions for Navier–Stokes equations with initial data in weighted \(L^2\) spaces. arXiv:1906.11038
- 12.Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. In: Steady-state problems, 2nd edn. Springer Monographs in Mathematics. Springer, New York (2011). ISBN: 978-0-387-09619-3Google Scholar
- 13.Guillod, J., Šverák, V.: Numerical investigations of non-uniqueness for the Navier–Stokes initial value problem in borderline spaces. arXiv:1704.00560
- 14.Hao, J., Šverák, V.: Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268(12), 3734–3766 (2015)MathSciNetCrossRefGoogle Scholar
- 15.Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 16.Jia, H., Šverák, V.: Minimal \(L^3\)-initial data for potential Navier–Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013)MathSciNetCrossRefGoogle Scholar
- 17.Kang, K., Miura, H., Tsai, T.-P.: Short time regularity of Navier–Stokes flows with locally \(L^3\) initial data and applications, preprint. arXiv:1812.10509
- 18.Kikuchi, N., Seregin, G.: Weak Solutions to the Cauchy Problem for the Navier–Stokes Equations Satisfying the Local Energy Inequality. Nonlinear Equations and Spectral Theory. American Mathematical Society Translations: Series 2, vol. 220, pp. 141–164. American Mathematical Society, Providence (2007)zbMATHGoogle Scholar
- 19.Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)MathSciNetCrossRefGoogle Scholar
- 20.Kukavica, I.: On partial regularity for the Navier–Stokes equations. Discrete Contin. Dyn. Syst. 21(3), 717–728 (2008)MathSciNetCrossRefGoogle Scholar
- 21.Kukavica, I., Vicol, V.: On local uniqueness of weak solutions to the Navier–Stokes system with \({\rm BMO}^{-1}\) initial datum. J. Dyn. Differ. Equ. 20(3), 719–732 (2008)MathSciNetCrossRefGoogle Scholar
- 22.Kwon, H., Tsai, T.-P.: Global Navier–Stokes flows for non-decaying initial data with slowly decaying oscillation. arXiv:1811.03249
- 23.Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)CrossRefGoogle Scholar
- 24.Lemarié-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. CRC Press, Boca Raton, FL (2016)CrossRefGoogle Scholar
- 25.Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)MathSciNetCrossRefGoogle Scholar
- 26.Maekawa, Y., Miura, H., Prange, C.: Local energy weak solutions for the Navier–Stokes equations in the half-space. Commun. Math. Phys. 367(2), 517–580 (2019)ADSMathSciNetCrossRefGoogle Scholar
- 27.Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier–Stokes Equations. Cambridge Studies in Advanced Mathematics, Classical Theory, vol. 157. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
- 28.Rusin, W., Šverák, V.: Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal. 260(3), 879–891 (2011)MathSciNetCrossRefGoogle Scholar
- 29.Stein, E.M.: Note on singular integrals. Proc. Am. Math. Soc. 8, 250–254 (1957)MathSciNetCrossRefGoogle Scholar
- 30.Temam, R.: Navier–Stokes Equations. AMS Chelsea Publishing, Providence, RI, (2001). Theory and Numerical Analysis, Reprint of the 1984 editionGoogle Scholar
- 31.Tsai, T.-P.: Lectures on Navier–Stokes equations, Graduate Studies in Mathematics, vol. 192. American Mathematical Society, Providence (2018)CrossRefGoogle Scholar