Blowup for Projected \(\mathbf {2}\)-Dimensional Rotational \({\mathbf {C}}^{2}\) Solutions of Compressible Euler Equations

  • Manwai YuenEmail author


The compressible Euler equations are the classical model in fluid dynamics. In this study, we investigate the life span of the projected 2-dimensional rotational \(C^{2}\) non-vacuum solutions of the Euler equations. By examining the corresponding projected 2-dimensional solutions,
$$\begin{aligned} (\rho (t,x_{1},x_{2}),u_{1}(t,x_{1},x_{2}),u_{2}(t,x_{1},x_{2}),0), \end{aligned}$$
in \(\mathbf {R}^{3}\), we prove that there exist the corresponding blowup results for the rotational \(C^{2}\) solutions with a sufficiently large initial functional
$$\begin{aligned} H(0)= {\displaystyle \int _{\mathbf {R}^{3}}} \vec {x}\cdot \vec {u}_{0}dV. \end{aligned}$$


Compressible Euler equations Blowup Rotational solutions Initial value problem Functional method Non-vacuum 

Mathematics Subject Classification

35B44 35L67 35Q31 76U05 35B30 



The author thanks for the anonymous reviewers’ valuable comments for improving the quality of this article. This research was partially supported by the Dean’s Research Fund 2015-16 (FLASS/DRF/SFRS-6) from the Education University of Hong Kong.

Compliance with ethical standards

Conflict of interest

The author declare that there is no conflict of interest.


  1. 1.
    Billingham, J., King, A.C.: Wave Motion. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2000) Google Scholar
  2. 2.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, vol. 106. Springer, New York (1994)CrossRefGoogle Scholar
  3. 3.
    Chae, D.H., Ha, S.Y.: On the formation of shocks to the compressible Euler equations. Commun. Math. Sci. 7, 627–634 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chemin, J.Y.: Dynamique des Gaz à Masse Totale Finie. Asymptot. Anal. 3, 215–220 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, G.Q., Wang, D.H.: The Cauchy problem for the Euler equations for compressible fluids. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 421–543. North-Holland, Amsterdam (2002)Google Scholar
  6. 6.
    Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Texts in Applied Mathematics, vol. 4, 3rd edn. Springer, New York (1993)CrossRefGoogle Scholar
  7. 7.
    Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2007)Google Scholar
  8. 8.
    Christodoulou, D., Miao, S.: Compressible Flow and Euler’s Equations. Surveys of Modern Mathematics, vol. 9. International Press, Somerville (2014)zbMATHGoogle Scholar
  9. 9.
    Constantin, A.: Breaking Water Waves. Encyclopedia of Mathematical Physics, pp. 383–386. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  10. 10.
    Currie, I.G.: Fundamental Mechanics of Fluids, 3rd edn. Marcel Dekker, New York (2003)zbMATHGoogle Scholar
  11. 11.
    Einzel, D.: Superfluids. Encyclopedia of Mathematical Physics, pp. 115–121. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  12. 12.
    Engelberg, S.: Formation of singularities in the Euler and Euler-Poisson equations. Phys. D 98, 67–74 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fefferman, C.L.: Existence and smoothness of the Navier–Stokes equation. In: The Millennium Prize Problems, pp. 57–67. Clay Mathematics Institute, Cambridge, MA (2006)Google Scholar
  14. 14.
    Lei, Z., Du, Y., Zhang, Q.: Singularities of solutions to compressible Euler equations with vacuum. Math. Res. Lett. 20, 41–50 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lions, P.L.: Mathematical Topics in Fluid Mechanics, vols. 1, 2. Clarendon Press, Oxford (1998)Google Scholar
  16. 16.
    Liu, T.P.: Compressible flow with damping and vacuum. Jpn. J. Ind. Appl. Math. 13, 25–32 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luk, J., Speck, J.: Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity. Invent. Math. 214, 1–169 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Makino, T., Ukai, S., Kawashima, S.: Sur la Solution à Support Compact de l’Équations d’Euler Compressible (French) [On the compactly supported solution of the compressible Euler equations]. Jpn. J. Appl. Math. 3, 249–257 (1986)CrossRefGoogle Scholar
  19. 19.
    Serre, D.: Expansion of a compressible gas in vacuum. Bull. Inst. Math. Acad. Sin. (N.S.) 10, 695–716 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sideris, T.C.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101, 475–485 (1985)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Sideris, T.C.: Spreading of the free boundary of an ideal fluid in a vacuum. J. Differ. Equ. 257, 1–14 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Suzuki, T.: Irrotational blowup of the solution to compressible Euler equation. J. Math. Fluid Mech. 15, 617–633 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Yuen, M.W.: Blowup for the Euler and Euler-Poisson equations with repulsive forces. Nonlinear Anal. TMA 74, 1465–1470 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yuen, M.W.: Blowup for irrotational \(C^{1} \) solutions of the compressible Euler equations in \(R^{N}\). Nonlinear Anal. TMA 158, 132–141 (2017)CrossRefGoogle Scholar
  25. 25.
    Yuen, M.W.: Blowup for regular solutions and \(C^{1}\) solutions of Euler equations in \(R^{N}\) with a free boundary. Eur. J. Mech. B Fluids 67, 427–432 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Information TechnologyThe Education University of Hong KongTai PoHong Kong

Personalised recommendations