Advertisement

On Local Type I Singularities of the Navier–Stokes Equations and Liouville Theorems

  • Dallas AlbrittonEmail author
  • Tobias Barker
Article

Abstract

We prove that suitable weak solutions of the Navier–Stokes equations exhibit Type I singularities if and only if there exists a non-trivial mild bounded ancient solution satisfying a Type I decay condition. The main novelty is in the reverse direction, which is based on the idea of zooming out on a regular solution to generate a singularity. By similar methods, we prove a Liouville theorem for ancient solutions of the Navier–Stokes equations bounded in \(L^3\) along a backward sequence of times.

Notes

Acknowledgements

The authors would like to thank Gregory Seregin, Vladimır Šverák, and Julien Guillod for helpful suggestions on a preliminary version of the paper. DA was supported by the NDSEG Graduate Fellowship and a travel grant from the Council of Graduate Students at the University of Minnesota.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Albritton, D., Barker, T.: Localised necessary conditions for singularity formation in the Navier–Stokes equations with curved boundary. arXiv e-prints (2018)Google Scholar
  2. 2.
    Albritton, D.: Blow-up criteria for the Navier–Stokes equations in non-endpoint critical Besov spaces. Anal. PDE 11(6), 1415–1456 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albritton, D., Barker, T.: Global weak Besov solutions of the Navier–Stokes equations and applications. Arch. Ration. Mech. Anal. 232, 197–263 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barker, T., Seregin, G.: Ancient solutions to Navier–Stokes equations in half space. J. Math. Fluid Mech. 17(3), 551–575 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barker, T., Seregin, G.: A necessary condition of potential blowup for the Navier–Stokes system in half-space. Math. Ann. 369(3), 1327–1352 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barker, T., Seregin, G., Šverák, V.: On stability of weak Navier–Stokes solutions with large \({L}^{3,\infty }\) initial data. Commun. Part. Differ. Equ. 0(0), 1–24 (2018)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Calderón, C.P.: Existence of weak solutions for the Navier–Stokes equations with initial data in \(L^p\). Trans. Am. Math. Soc. 318(1), 179–200 (1990)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Carrillo, B., Pan, X., Zhang, Q.S.: Decay and vanishing of some axially symmetric D-solutions of the Navier–Stokes equations (2018). arXiv preprint arXiv:1801.07420
  9. 9.
    Chae, D., Wolf, J.: On the Liouville type theorems for self-similar solutions to the Navier–Stokes equations. Arch. Ration. Mech. Anal. 225(1), 549–572 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    De Giorgi, E.: Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa 3(19), 79–85 (1965)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dong, H., Dapeng, D.: The Navier–Stokes equations in the critical Lebesgue space. Commun. Math. Phys. 292(3), 811–827 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Escauriaza, L., Seregin, G., Šverák, V.: \(L_{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2(350)), 3–44 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Giga, Y., Hsu, P.-Y., Maekawa, Y.: A Liouville theorem for the planer Navier–Stokes equations with the no-slip boundary condition and its application to a geometric regularity criterion. Commun. Part. Differ. Equ. 39(10), 1906–1935 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guevara, C., Phuc, N.C.: Leray’s self-similar solutions to the Navier–Stokes equations with profiles in Marcinkiewicz and Morrey spaces. SIAM J. Math. Anal. 50(1), 541–556 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jia, H., Šverák, V.: Minimal \(L^3\)-initial data for potential Navier–Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kim, H., Kozono, H.: Interior regularity criteria in weak spaces for the Navier–Stokes equations. Manuscr. Math. 115(1), 85–100 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Koch, G., Nadirashvili, N., Seregin, G.A., Šverák, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203(1), 83–105 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kukavica, I., Rusin, W., Ziane, M.: An anisotropic partial regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech. 19(1), 123–133 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lei, Z., Zhang, Q.S.: On ancient periodic solutions to axially-symmetric Navier–Stokes equations (2019). arXiv preprint arXiv:1902.11229
  22. 22.
    Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nečas, J., Růžička, M., Šverák, V.: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176(2), 283–294 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Neustupa, J., Penel, P.: Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of regularity of one velocity component. In: Applied Nonlinear Analysis, pp. 391–402. Kluwer, New York (1999) CrossRefGoogle Scholar
  25. 25.
    Pham, T.: Topics in the regularity theory of the Navier–Stokes equations. Ph.D. Thesis, University of Minnesota (2018)Google Scholar
  26. 26.
    Rusin, W., Šverák, V.: Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal. 260(3), 879–891 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Seregin, G.: Liouville theorem for 2D Navier–Stokes equations in a half space. J. Math. Sci. (N.Y.) 210(6), 849–856 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Seregin, G., Šverák, V.: On type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations. Commun. Part. Differ. Equ. 34(1–3), 171–201 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Seregin, G., Šverák, V.: On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large \(L_3\)-initial data. Nonlinear Anal. 154, 269–296 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Seregin, G., Šverák, V.: Rescalings at possible singularities of Navier–Stokes equations in half-space. Algebra i Analiz 25(5), 146–172 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Seregin, G., Zhou, D.: Regularity of solutions to the Navier–Stokes equations in \(\dot{B}_{\infty ,\infty }^{-1}\). arXiv e-prints (2018)Google Scholar
  33. 33.
    Seregin, G.A.: Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37):199–210, 277 (2006)Google Scholar
  34. 34.
    Seregin, G.A., Shilkin, T.N.: Liouville-type theorems for the Navier–Stokes equations. Russ. Math. Surv. 73(4), 661 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Seregin, G.: Lecture Notes on Regularity Theory for the Navier–Stokes Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015)zbMATHGoogle Scholar
  36. 36.
    Seregin, G.: On type I blowups of suitable weak solutions to Navier–Stokes equations near boundary (2019). arXiv e-prints. arXiv:1901.08842
  37. 37.
    Seregin, G., Šverák, V.: Regularity Criteria for Navier–Stokes Solutions, pp. 1–38. Springer, Cham (2016)Google Scholar
  38. 38.
    Tao, T.: Localisation and compactness properties of the Navier–Stokes global regularity problem. Anal. PDE 6(1), 25–107 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Tsai, T.-P.: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143(1), 29–51 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zajaczkowski, W., Seregin, G.A.: A sufficient condition of local regularity for the Navier–Stokes equations. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 37):46–54, 274 (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.DMA, École Normale Supérieure CNRSPSL Research UniversityParisFrance

Personalised recommendations