Advertisement

Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude

  • Jifeng Chu
  • Delia Ionescu-KruseEmail author
  • Yanjuan Yang
Article
  • 26 Downloads

Abstract

The aim of this paper is to provide, in a \(\beta \)-plane approximation with centripetal forces, an explicit three-dimensional nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying background current. This solution is linearly unstable when the steepness of the wave exceeds a specific threshold.

Keywords

Geophysical waves Centripetal forces Exact solution Short-wavelength method Localized instability analysis 

Notes

Acknowledgements

We would like to show our thanks to the anonymous referees for their valuable suggestions and comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bayly, B.J.: Three-dimensional instabilities in quasi-two-dimensional inviscid flows. In: Miksad, R.W., et al. (eds.) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)Google Scholar
  2. 2.
    Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves at arbitrary latitude. Discrete Contin. Dyn. Syst. (in press)Google Scholar
  3. 3.
    Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)Google Scholar
  4. 4.
    Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)CrossRefGoogle Scholar
  5. 5.
    Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)CrossRefGoogle Scholar
  6. 6.
    Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)CrossRefGoogle Scholar
  7. 7.
    Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)CrossRefGoogle Scholar
  8. 8.
    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)CrossRefGoogle Scholar
  10. 10.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the antarctic circumpolar current. J. Phys. Oceanogr. 46, 3585–3594 (2016)CrossRefGoogle Scholar
  11. 11.
    Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)CrossRefGoogle Scholar
  12. 12.
    Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cushman-Roisin, B., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011)zbMATHGoogle Scholar
  14. 14.
    Fan, L., Gao, H.: Instability of equatorial edge waves in the background flow. Proc. Am. Math. Soc. 145, 765–778 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fan, L., Gao, H., Xiao, Q.: An exact solution for geophysical trapped waves in the presence of an underlying current. Dyn. Partial Differ. Equ. 15, 201–214 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gill, A.E.: Atmosphere–Ocean Dynamics. Elsevier, Amsterdam (1982)Google Scholar
  19. 19.
    Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Henry, D.: Exact equatorial water waves in the \(f\)-plane. Nonlinear Anal. Real World Appl. 28, 284–289 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Henry, D.: Equatorially trapped nonlinear water waves in a \(\beta \)-plane approximation with centripetal forces. J. Fluid Mech. 804(R1), 11 (2016)MathSciNetGoogle Scholar
  22. 22.
    Henry, D.: A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave–current interactions. J. Differ. Equ. 263, 2554–2566 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Henry, D.: On three-dimensional Gerstner-like equatorial water waves. Philos. Trans. R. Soc. A 376(2111), 20170088 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Henry, D., Hsu, H.-C.: Instability of equatorial water waves in the \(f\)-plane. Discrete Contin. Dyn. Syst. 35, 909–916 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differ. Equ. 258, 1015–1024 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hsu, H.-C.: An exact solution for equatorial waves. Monatsh. Math. 176, 143–152 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(f\)-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(\beta \)-plane approximation. J. Math. Fluid Mech. 17, 699–706 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ionescu-Kruse, D.: Instability of equatorially trapped waves in stratified water. Ann. Mat. Pura Appl. 195, 585–599 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ionescu-Kruse, D.: Instability of Pollard’s exact solution for geophysical ocean flows. Phys. Fluids 28, 086601 (2016)CrossRefGoogle Scholar
  31. 31.
    Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A 376(2111), 20170090 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ionescu-Kruse, D.: A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows. J. Differ. Equ. 264, 4650–4668 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Johnson, R.S.: Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Philos. Trans. R. Soc. A 376(2111), 20170092 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Leblanc, S.: Local stability of Gerstner’s waves. J. Fluid Mech. 506, 245–254 (2004)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lifschitz, A., Hameiri, E.: Local stability conditions in fluid mechanics. Phys. Fluids 3, 2644–2651 (1991)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Matioc, A.-V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, 365501 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Matioc, A.-V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92, 2254–2261 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Pollard, R.T.: Surface waves with rotation: an exact solution. J. Geophys. Res. 75, 5895–5898 (1970)CrossRefGoogle Scholar
  39. 39.
    Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 6BucharestRomania
  3. 3.Department of MathematicsHohai UniversityNanjingChina

Personalised recommendations