Theoretical Considerations, Flow Visualization and Pressure Measurements for Rear-End Collisions of Two Unequal Solitary Waves

  • Motohiko UmeyamaEmail author


This paper discusses some theoretical results and some visualization techniques such as particle image velocimetry (PIV), particle tracking velocimetry, particle mask correlation (PMC), and image thresholding. These are used to examine the wave dynamics and kinematics of the rear-end collision of two unequal solitary waves. Spatial surface profiles during the interaction were measured in detail using several photos with the PMC method. The velocity-field measurements of the compound waves were conducted using the super-resolution PIV that consists of an 8-W ND:YAG laser and a high-speed CCD camera. We investigated, independently, three types of surface profiles and velocity fields: smaller, taller, and compound waves in the rear-end collision period. In addition, the dynamic pressure was determined to help our understanding of the nature of the interactions; this was accomplished by using small pressure transducers placed at various locations throughout the water depth.


Solitary waves Rear-end collision PIV PMC Dynamic pressure 

Mathematics Subject Classification

Primary 76B25 Secondary 76B07 


Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. 1.
    Adrian, R.J.: Particle imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991). ADSCrossRefGoogle Scholar
  2. 2.
    Amick, C.J., Toland, J.F.: On periodic water-waves and their convergence to solitary waves in the long-wave limit. Philos. Trans. R. Soc. Lond. Ser. A 303, 633–669 (1981). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Basu, B.: Solitary water waves propagating on an underlying uniform current over a finite depth. Nonlinear Anal. 172, 25–35 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Borluk, H., Kalisch, H.: Particle dynamics in the KdV approximation. Wave Motion 49, 691–709 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clamond, D.: Steady finite-amplitude waves on a horizontal seabed of arbitrary depth. J. Fluid Mech. 398, 45–60 (1999). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Constantin, A.: On the particle paths in solitary water waves. Quart. Appl. Math. 68, 81–90 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Constantin, A.: Nonlinear Water Waves with Applications to Wave–Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, 81, p. 321. SIAM, Philadelphia (2011)CrossRefGoogle Scholar
  9. 9.
    Constantin, A.: On the recovery of solitary wave profiles from pressure measurements. J. Fluid Mech. 699, 376–384 (2012). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Constantin, A.: The time evolution of the maximal horizontal surface fluid velocity for an irrotational wave approaching breaking. J. Fluid Mech. 768, 468–475 (2015). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Constantin, A.: Extrema of the dynamic pressure in an irrotational regular wave train. Phys. Fluids 28, 113604 (2016). ADSCrossRefGoogle Scholar
  12. 12.
    Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Constantin, A., Escher, J., Hsu, H.-C.: Pressure beneath a solitary water wave: mathematical theory and experiments. Arch. Ration. Mech. Anal. 201, 251–269 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Constantin, A., Henry, D.: Solitons and tsunamis. Z. Naturforsch 64a, 65–68 (2009). ADSCrossRefGoogle Scholar
  16. 16.
    Constantin, A., Johnson, R.S.: Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis. Fluid Dyn. Res. 40, 175–211 (2008). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Craig, W.: Non-existence of solitary water waves in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A 360, 2127–2135 (2002). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Craig, W., Guyenne, P., Hammack, J., Henderson, D., Sulem, C.: Solitary water wave interactions. Phys. Fluids 18, 057106 (2006). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Craig, W., Sternberg, P.: Symmetry of solitary waves. Commun. Part. Differ. Equ. 13, 603–633 (1988). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dauxois, T., Peyrard, M.: Physics of Solitons, p. 422. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  21. 21.
    Dean, R.G., Dalrymple, R.A.: Water Wave Mechanics for Engineers and Scientists, p. 353. Prentice-Hall, Englewood Cliffs (1984)Google Scholar
  22. 22.
    Drazin, P.G., Johnson, R.S.: Solitons: An Introduction, p. 226. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  23. 23.
    Friedrichs, K.O., Hyers, D.H.: The existence of solitary waves. Commun. Pure Appl. Math. 7, 517–550 (1954). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Genoud, F.: Extrema of the dynamic pressure in a solitary wave. Nonlinear Anal. 155, 65–71 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Goring, D.G.: Tsunamis: The propagation of long waves onto a shelf. Ph.D. thesis, Caltech, 337 pp (1978)Google Scholar
  26. 26.
    Hammack, J., Henderson, D., Guyenne, P., Ming, Y.: Solitary-wave collisions. In: A Symposium to honor Theodore Yao-Tsu Wu; OMAE 2004, ASME, pp. 1–12 (2004)Google Scholar
  27. 27.
    Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves, p. 445. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  28. 28.
    Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal and a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lavrentiev, M.A.: I. On the theory of long waves. II. A contribution to the theory of long waves. Am. Math. Soc. Transl. 102, 53 (1954)MathSciNetGoogle Scholar
  30. 30.
    Longuet-Higgins, M.S.: On the decrease of velocity with depth in an irrotational water wave. Math. Proc. Camb. Philos. Soc. 49, 552–560 (1953). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Scott Russell, J.: Report on waves. Rep. Meet. Brit. Assoc. Adv. Sci. 14, 311–390 (1844)Google Scholar
  32. 32.
    Stoker, J.J.: Water Waves: The Mathematical Theory with Applications, p. 567. Interscience Publishers Inc, New York (1957)zbMATHGoogle Scholar
  33. 33.
    Stuhlmeier, R.: KdV theory and the Chilean tsunami of 1960. Discrete Contin. Dyn. Syst. Ser. B 12, 623–632 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ter-Krikorov, A.: The existence of periodic waves which degenerate into a solitary wave. J. Appl. Math. Mech. 24, 930–949 (1960)CrossRefGoogle Scholar
  35. 35.
    Umeyama, M.: PIV techniques for velocity fields of internal waves over a slowly varying bottom topography. J. Water Port Coast. Ocean Eng 134, 286–298 (2008). CrossRefGoogle Scholar
  36. 36.
    Umeyama, M.: Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current. J. Water Port Coast. Ocean Eng. 137, 85–94 (2011). CrossRefGoogle Scholar
  37. 37.
    Umeyama, M.: Eulerian–Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Philos. Trans. R. Soc. Lond. Ser. A 370, 1687–1702 (2012). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Umeyama, M., Nguyen, K.-C.: PIV measurements of particle velocities and trajectories for internal waves propagating in a two-layer fluid on a sloping boundary currents. Coast. Eng. Proc. 33, 54 (2012). CrossRefGoogle Scholar
  39. 39.
    Umeyama, M., Shintani, T., Nguyen, K.-C., Matsuki, S.: Measurements of particle velocities and trajectories for internal waves propagating in a density-stratified two-layer fluid on a slope. In: Cavazzini, G. (ed.) Particle Image Velocimetry, pp. 321–344 (2012).
  40. 40.
    Umeyama, M.: Investigation of single and multiple solitary waves using superresolution PIV. J. Water Port Coast. Ocean Eng. 139, 303–313 (2013). CrossRefGoogle Scholar
  41. 41.
    Umeyama, M.: Experimental study of head-on and rear-end collisions of two unequal solitary waves. Ocean Eng. 137, 174–192 (2017). CrossRefGoogle Scholar
  42. 42.
    Umeyama, M.: Dynamic-pressure distributions under Stokes waves with and without a current. Philos. Trans. R. Soc. Lond. Ser. A 370, 20170103, 19 pp. (2018)
  43. 43.
    Umeyama, M., Matsuki, S.: Measurements of velocity and trajectory of water particle for internal waves in two density layers. Geophys. Res. Lett. 38, L03612 (2011). ADSCrossRefGoogle Scholar
  44. 44.
    Umeyama, M., Shinomiya, H.: Particle image velocimetry measurements for Stokes progressive internal waves. Geophys. Res. Lett. 36, L06603 (2009). ADSCrossRefGoogle Scholar
  45. 45.
    Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965). ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations