Pointwise Decay in Space and in Time for Incompressible Viscous Flow Around a Rigid Body Moving with Constant Velocity
Article
First Online:
- 5 Downloads
Abstract
We present pointwise space–time decay estimates for the velocity part of solutions to the time-dependent Oseen system in 3D, with Dirichlet boundary conditions and vanishing velocity at infinity. In addition, similar estimates are derived for solutions to the time-dependent incompressible Navier–Stokes system with Oseen term, and for solutions to the stability problem associated with the stationary incompressible Navier–Stokes system with Oseen term.
Keywords
Incompressible Navier–Stokes system Oseen term DecayMathematics Subject Classification
35Q30 65N30 76D05Notes
Compliance with Ethical Standards
Conflict of interest
The author declares that he has no conflict of interest.
References
- 1.Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
- 2.Babenko, K.I., Vasil’ev, M.M.: On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body. Prikl. Mat. Meh. 37, : 690–705 (Russian); English translation. J. Appl. Math. Mech. 37(1973), 651–665 (1973)MathSciNetCrossRefGoogle Scholar
- 3.Bae, H.-O., Jin, B.J.: Estimates of the wake for the 3D Oseen equations. Discret. Contin. Dyn. Syst. Ser. B 10, 1–18 (2008)MathSciNetCrossRefGoogle Scholar
- 4.Bae, H.-O., Roh, J.: Stability for the 3D Navier–Stokes equations with nonzero far field velocity on exterior domains. J. Math. Fluid Mech. 14, 117–139 (2012)ADSMathSciNetCrossRefGoogle Scholar
- 5.Deuring, P.: Exterior stationary Navier–Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient. IASME Trans. 6, 900–904 (2005)MathSciNetGoogle Scholar
- 6.Deuring, P.: The single-layer potential associated with the time-dependent Oseen system. In: Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics. pp. 117–125. Chalkida, Greeece, (2006)Google Scholar
- 7.Deuring, P.: On volume potentials related to the time-dependent Oseen system. WSEAS Trans. Math. 5, 252–259 (2006)MathSciNetGoogle Scholar
- 8.Deuring, P.: On boundary driven time-dependent Oseen flows. Banach Center Publ. 81, 119–132 (2008)MathSciNetCrossRefGoogle Scholar
- 9.Deuring, P.: A potential theoretic approach to the time-dependent Oseen system. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics. Dedicated to Giovanni Paolo Galdi on the Occasion of his 60th Birthday. pp. 191–214. Springer, Berlin, (2010)Google Scholar
- 10.Deuring, P.: Spatial decay of time-dependent Oseen flows. SIAM J. Math. Anal. 41, 886–922 (2009)MathSciNetCrossRefGoogle Scholar
- 11.Deuring, P.: A representation formula for the velocity part of 3D time-dependent Oseen flows. J. Math. Fluid Mech. 16, 1–39 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 12.Deuring, P.: The Cauchy problem for the homogeneous time-dependent Oseen system in \( {\mathbb{R}}^3 \): spatial decay of the velocity. Math. Bohemica 138, 299–324 (2013)MathSciNetzbMATHGoogle Scholar
- 13.Deuring, P.: Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support. Discrete Contin. Dyn. Syst. Ser. A 33, 2757–2776 (2013)MathSciNetCrossRefGoogle Scholar
- 14.Deuring, P.: Spatial decay of time-dependent incompressible Navier–Stokes flows with nonzero velocity at infinity. SIAM J. Math. Anal. 45, 1388–1421 (2013)MathSciNetCrossRefGoogle Scholar
- 15.Deuring, P., Kračmar, S.: Exterior stationary Navier–Stokes flows in 3D with non-zero velocity at infinity: approximation by flows in bounded domains. Math. Nachr. 269–270, 86–115 (2004)MathSciNetCrossRefGoogle Scholar
- 16.Enomoto, Y., Shibata, Y.: Local energy decay of solutions to the Oseen equation in the exterior domain. Indiana Univ. Math. J. 53, 1291–1330 (2004)MathSciNetCrossRefGoogle Scholar
- 17.Enomoto, Y., Shibata, Y.: On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier–Stokes equation. J. Math. Fluid Mech. 7, 339–367 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 18.Farwig, R.: The stationary exterior 3D-problem of Oseen and Navier–Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992)MathSciNetCrossRefGoogle Scholar
- 19.Fučik, S., John, O., Kufner, A.: Function Spaces. Noordhoff, Leyden (1977)zbMATHGoogle Scholar
- 20.Galdi, g P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer, New York (2011)zbMATHGoogle Scholar
- 21.Heywood, J.G.: The exterior nonstationary problem for the Navier–Stokes equations. Acta Math. 129, 11–34 (1972)MathSciNetCrossRefGoogle Scholar
- 22.Heywood, J.G.: The Navier–Stokes equations. On the existence, regularity and decay of solutions. Indiana Univ. Math. J 29, 639–681 (1980)MathSciNetCrossRefGoogle Scholar
- 23.Knightly, G.H.: Some decay properties of solutions of the Navier–Stokes equations. In: Rautmann, R. (ed.): Approximation methods for Navier–Stokes problems. Lecture Notes in Mathematics, vol. 771, pp. 287–298. Springer, Berlin, (1979)Google Scholar
- 24.Kobayashi, T., Shibata, Y.: On the Oseen equation in three-dimensional exterior domains. Math. Ann. 310, 1–45 (1998)MathSciNetCrossRefGoogle Scholar
- 25.Masuda, K.: On the stability of incompressible viscous fluid motions past bodies. J. Math. Soc. Jpn. 27, 294–327 (1975)CrossRefGoogle Scholar
- 26.Miyakawa, T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)MathSciNetCrossRefGoogle Scholar
- 27.Mizumachi, R.: On the asymptotic behaviour of incompressible viscous fluid motions past bodies. J. Math. Soc. Jpn. 36, 497–522 (1984)MathSciNetCrossRefGoogle Scholar
- 28.Neustupa, J.: Stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid Mech. 11, 22–45 (2009)ADSMathSciNetCrossRefGoogle Scholar
- 29.Neustupa, J.: A spectral criterion for stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid Mech. 18, 133–156 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 30.Shen, Zongwei: Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders. Am. J. Math. 113, 293–373 (1991)CrossRefGoogle Scholar
- 31.Shibata, Y.: On an exterior initial boundary value problem for Navier-Stokes equations. Q. Appl. Math. 57, 117–155 (1999)MathSciNetCrossRefGoogle Scholar
- 32.Solonnikov, V.A.: A priori estimates for second order parabolic equations. Trudy Mat. Inst. Steklov. 70: 133–212 (Russian). English translation. AMS Trans. 65(1967), 51–137 (1964)Google Scholar
- 33.Solonnikov, V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38: 153–231 (Russian); English translation. J. Soviet Math. 8(1977), 467–529 (1973)Google Scholar
- 34.Stein, E.M.: Singular Integrals and Differentiability of Functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019