Divergence Free Polar Wavelets for the Analysis and Representation of Fluid Flows

  • Christian LessigEmail author


We present a Parseval tight wavelet frame for the representation and analysis of velocity vector fields of incompressible fluids. Our wavelets have closed form expressions in the frequency and spatial domains, are divergence free in the ideal, analytic sense, have a multi-resolution structure and fast transforms, and an intuitive correspondence to common flow phenomena. Our construction also allows for well defined directional selectivity, e.g. to model the behavior of divergence free vector fields in the vicinity of boundaries or to represent highly directional features like in a von Kármán vortex street. We demonstrate the practicality and efficiency of our construction by analyzing the representation of different divergence free vector fields in our wavelets.


Divergence freedom Wavelets Tight frames 

Mathematics Subject Classification

Primary 42C40 Secondary 76B99 



The author thanks Eugene Fiume for continuing support. Michal Jarzabek and Philipp Herholz helped with implementing the construction.

Compliance with ethical standards

Conflict of interest

The author declares that he have no conflict of interest.


  1. 1.
    Abry, P., Flandrin, P.: On the initialization of the discrete wavelet transform algorithm. IEEE Signal Process. Lett. 1(2), 32–34 (1994)ADSGoogle Scholar
  2. 2.
    Battle, G., Federbush, P.: Divergence-free vector wavelets. Mich. Math. J. 40(1), 181–195 (1993)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Battle, G., Federbush, P., Uhlig, P.: Wavelets for quantum gravity and divergence-free wavelets. Appl. Comput. Harmon. Anal. 1(3), 295–297 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bostan, E., Unser, M., Ward, J.P.: Divergence-free wavelet frames. IEEE Signal Process. Lett. 22(8), 1142–1146 (2015)ADSGoogle Scholar
  5. 5.
    Candès, E., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \(\text{ C }^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)zbMATHGoogle Scholar
  6. 6.
    Candès, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? R. Soc. Lond. Philos. Trans. Ser. A 357, 2495 (1999)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Candès, E.J., Donoho, D.L.: Continuous curvelet transform: I. Resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19(2), 162–197 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chenouard, N., Unser, M.: 3D steerable wavelets in practice. IEEE Trans. Image Process. 21(11), 4522–4533 (2012)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)zbMATHGoogle Scholar
  10. 10.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)ADSGoogle Scholar
  11. 11.
    Federbush, P.: A phase cell approach to Yang–Mills theory. I. Modes, lattice-continuum duality. Commun. Math. Phys. 107(2), 319–329 (1986)ADSMathSciNetGoogle Scholar
  12. 12.
    Federbush, P.: A phase cell approach to Yang–Mills theory. III. Local stability, modified renormalization group transformation. Commun. Math. Phys. 110(2), 293–309 (1987)ADSMathSciNetGoogle Scholar
  13. 13.
    Federbush, P.: A phase cell approach to Yang–Mills theory. IV. The choice of variables. Commun. Math. Phys. 114(2), 317–343 (1988)ADSMathSciNetGoogle Scholar
  14. 14.
    Freeman, D., Poore, D., Wei, A.R., Wyse, M.: Moving Parseval frames for vector bundles. Houst. J. Math. 40(3), 817–832 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)Google Scholar
  16. 16.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (2004)zbMATHGoogle Scholar
  17. 17.
    Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)ADSGoogle Scholar
  18. 18.
    Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Signal Process. Mag. 24(5), 115–125 (2007)ADSGoogle Scholar
  19. 19.
    Labate, D., Lim, W.-Q., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. In: Papadakis, M., Laine, A.F., Unser, M.A. (eds.) Wavelets XI, pp. 254–262. International Society for Optics and Photonics, Aug 2005Google Scholar
  20. 20.
    Lemarie-Rieusset, P.-G.: Wavelets, splines and divergence-free vector functions. In: Singh, S.P. (ed.) Approximation Theory, Spline Functions and Applications, pp. 381–390. Springer, Dordrecht (1992)zbMATHGoogle Scholar
  21. 21.
    Lessig, C.: Polar wavelets in space. IEEE Signal Process. Lett. (submitted) (2018).
  22. 22.
    Mallat, S.G.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, London (2009)zbMATHGoogle Scholar
  23. 23.
    McEwen, J.D., Durastanti, C., Wiaux, Y.: Localisation of directional scale-discretised wavelets on the sphere. Appl. Comput. Harmon. Anal. 44, 59–88 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Perona, P.: Deformable kernels for early vision. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 222–227. IEEE Computer Society Press (1991)Google Scholar
  25. 25.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)zbMATHGoogle Scholar
  26. 26.
    Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings, International Conference on Image Processing, vol. 3, pp. 444–447. IEEE Computer Society Press (1995)Google Scholar
  27. 27.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. Princeton University Press, Princeton (1993)Google Scholar
  28. 28.
    Suter, D.: Divergence-free wavelets made easy. Technical report, Monash University, Clayton, Australia (1994)Google Scholar
  29. 29.
    Unser, M., Chenouard, N.: A unifying parametric framework for 2D steerable wavelet transforms. SIAM J. Imaging Sci. 6(1), 102–135 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Urban, K.: On divergence-free wavelets. Adv. Comput. Math. 4(1), 51–81 (1995)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Walter, G.G., Cai, L.: Periodic wavelets from scratch. J. Comput. Anal. Appl. 1(1), 25–41 (1999)MathSciNetGoogle Scholar
  32. 32.
    Ward, J.P., Unser, M.: Harmonic singular integrals and steerable wavelets in L2(Rd). Appl. Comput. Harmon. Anal. 36(2), 183–197 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1922)zbMATHGoogle Scholar
  34. 34.
    Zhang, X.-P., Tian, L.-S., Peng, Y.-N.: From the wavelet series to the discrete wavelet transform—the initialization. IEEE Trans. Signal Process. 44(1), 129–133 (1996)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Otto-von-Guericke Universität MagdeburgMagdeburgGermany

Personalised recommendations