Advertisement

Coupled Self-Organized Hydrodynamics and Stokes Models for Suspensions of Active Particles

  • Pierre DegondEmail author
  • Sara Merino-Aceituno
  • Fabien Vergnet
  • Hui Yu
Open Access
Article

Abstract

We derive macroscopic dynamics for self-propelled particles in a fluid. The starting point is a coupled Vicsek–Stokes system. The Vicsek model describes self-propelled agents interacting through alignment. It provides a phenomenological description of hydrodynamic interactions between agents at high density. Stokes equations describe a low Reynolds number fluid. These two dynamics are coupled by the interaction between the agents and the fluid. The fluid contributes to rotating the particles through Jeffery’s equation. Particle self-propulsion induces a force dipole on the fluid. After coarse-graining we obtain a coupled Self-Organised Hydrodynamics–Stokes system. We perform a linear stability analysis for this system which shows that both pullers and pushers have unstable modes. We conclude by providing extensions of the Vicsek–Stokes model including short-distance repulsion, finite particle inertia and finite Reynolds number fluid regime.

Keywords

Collective dynamics Self-organization Hydrodynamic limit Alignment interaction Vicsek model Low Reynolds number Jeffery’s equation Volume exclusion Stability analysis Finite inertia Finite Reynolds number 

Mathematics Subject Classification

35L60 35L65 35P10 35Q70 82C22 82C70 82C80 92D50 

Notes

Acknowledgements

PD acknowledges support by the Engineering and Physical Sciences Research Council (EPSRC) under Grants No. EP/M006883/1 and EP/P013651/1, by the Royal Society and the Wolfson Foundation through a Royal Society Wolfson Research Merit Award No. WM130048 and by the National Science Foundation (NSF) under Grant No. RNMS11-07444 (KI-Net). PD is on leave from CNRS, Institutde Mathématiques de Toulouse, France. S.M.A. was supported by the British Engineering and Physical Research Council under Grant Ref: EP/M006883/1. HY acknowledges the support by Division of Mathematical Sciences [KI-Net NSF RNMS Grant Number 1107444]; DFG Cluster of Excellence Production technologies for high-wage countries [Grant Number DFG STE2063/1-1], [Grant Number HE5386/13,14,15-1]. HY and FV gratefully acknowledges the hospitality of the Department of Mathematics, Imperial College London, where part of this research was conducted. SMA is supported by the WWTF grant (Vienna Science and Technology Fund) Vienna Research Groups for Young Investigators, VRG17-014.

References

  1. 1.
    Baskaran, A., Marchetti, M.C.: Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Nat. Acad. Sci. USA 106(37), 15567–15572 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Bellomo, N., Bellouquid, A., Chouhad, N.: From a multiscale derivation of nonlinear cross-diffusion models to Keller–Segel models in a Navier–Stokes fluid. Math. Models Methods Appl. Sci. 26(11), 2041–2069 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bolley, F., Cañizo, J.A., Carrillo, J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 25(3), 339–343 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carrillo, J.A., Choi, Y.-P., Karper, T.K.: On the analysis of a coupled kinetic-fluid model with local alignment forces. Ann. Inst. Henri Poincare C Non Linear Anal. 33(2), 273–307 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, vol. 106. Springer, Berlin (2013)zbMATHGoogle Scholar
  6. 6.
    Chen, X., Liu, J.-G.: Global weak entropy solution to Doi–Saintillan–Shelley model for active and passive rod-like and ellipsoidal particle suspensions. J. Differ. Equ. 254(7), 2764–2802 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Creppy, A., Plouraboué, F., Praud, O., Druart, X., Cazin, S., Yu, H., Degond, P.: Symmetry-breaking phase transitions in highly concentrated semen. J. R. Soc. Interface 13(123), 20160575 (2016)CrossRefGoogle Scholar
  8. 8.
    Czirók, A., Ben-Jacob, E., Cohen, I., Vicsek, T.: Formation of complex bacterial colonies via self-generated vortices. Phys. Rev. E 54(2), 1791 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Modeling and Computational Methods for Kinetic Equations, pp. 3–57. Springer (2004)Google Scholar
  10. 10.
    Degond, P., Dimarco, G., Mac, T.B.N., Wang, N.: Macroscopic models of collective motion with repulsion. Commun. Math. Sci. 13(6) (2015)Google Scholar
  11. 11.
    Degond, P., Frouvelle, A., Liu, J.: Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics. Arch. Ration. Mech. Anal. 216(1), 63–115 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Degond, P., Frouvelle, A., Merino-Aceituno, S.: A new flocking model through body attitude coordination. Math. Models Methods Appl. Sci. 27, 1005–1049 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Degond, P., Frouvelle, A., Merino-Aceituno, S., Trescases, A.: Quaternions in collective dynamics. Multiscale Model. Simul. 16, 28–77 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Degond, P., Manhart, A., Yu, H.: A continuum model for nematic alignment of self-propelled particles. Discrete Contin. Dyn. Syst. B (2015)Google Scholar
  15. 15.
    Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(supp01), 1193–1215 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Degond, P., Navoret, L.: A multi-layer model for self-propelled disks interacting through alignment and volume exclusion. Math. Models Methods Appl. Sci. 25(13), 2439–2475 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Doi, M.: Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci. Polym. Phys. Ed. 19, 243 (1981)CrossRefGoogle Scholar
  18. 18.
    Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics, vol. 73. Oxford University Press, Oxford (1988)Google Scholar
  19. 19.
    Elgeti, J., Winkler, R.G., Gompper, G.: Physics of microswimmerssingle particle motion and collective behavior: a review. Rep. Prog. Phys. 78(5), 056601 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Ezhilan, B., Shelley, M.J., Saintillan, D.: Instabilities and nonlinear dynamics of concentrated active suspensions. Phys. Fluids 25(7), 070607 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Frouvelle, A.: A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters. Math. Models Methods Appl. Sci. 22(07), 1250011 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Han, J., Luo, Y., Wang, W., Zhang, P., Zhang, Z.: From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215, 741–809 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer, Berlin (2012)zbMATHGoogle Scholar
  24. 24.
    Hohenegger, C., Shelley, M.J.: Stability of active suspensions. Phys. Rev. E 81(4), 046311 (2010)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hsu, E.P.: Stochastic Analysis on Manifolds, vol. 38. American Mathematical Soc., Providence (2002)zbMATHGoogle Scholar
  26. 26.
    Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. In: Proceedings of the Royal Society A, Vol. 102, pp. 161–179. The Royal Society (1922)Google Scholar
  27. 27.
    Jiang, N., Xiong, L., Zhang, T.: Hydrodynamic limits of the kinetic self-organized models. SIAM J. Math. Anal. 48(5), 3383–3411 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Junk, M., Illner, R.: A new derivation of Jeffery’s equation. J. Math. Fluid Mech. 9(4), 455–488 (2007)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Koch, D.L., Subramanian, G.: Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 43, 637–659 (2011)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. Henri Poincare C Non Linear Anal. 28(5), 643–652 (2011)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Marchetti, M.C., Joanny, J., Ramaswamy, S., Liverpool, T., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85(3), 1143 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Ramaswamy, S.: The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1(1), 323–345 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus, vol. 2. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  34. 34.
    Saintillan, D., Shelley, M.J.: Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys. Rev. Lett. 100(17), 178103 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Saintillan, D., Shelley, M.J.: Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20(12), 123304 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Sone, Y.: Kinetic Theory and Fluid Dynamics. Springer, Berlin (2012)zbMATHGoogle Scholar
  37. 37.
    Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3), 71–140 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Wang, W., Zhang, P., Zhang, Z.: The small Deborah number limit of the Doi–Onsager equation to the Ericksen–Leslie equation. Commun. Pure Appl. Math. 68(8), 1326–1398 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Weinan, E., Zhang, P.: A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit. Methods Appl. Anal. 13(2), 181–198 (2006)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zhang, H., Beer, A., Florin, E.-L., Swinney, H.L.: Collective motion and density fluctuations in bacterial colonies. Proc. Natl. Acad. Sci. USA 107(31), 13626–13630 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Zhang, Q.: On the inviscid limit of the three dimensional incompressible Chemotaxis–Navier–Stokes equations. Nonlinear Anal. Real World Appl. 27, 70–79 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsImperial College LondonLondonUK
  2. 2.Faculty of MathematicsUniversity of ViennaViennaAustria
  3. 3.Department of MathematicsUniversity of SussexFalmer, BrightonUK
  4. 4.Laboratoire de mathématiques d’Orsay (LMO), Université Paris-Sud, CNRSUniversit Paris-SaclayOrsay CedexFrance
  5. 5.Institut für Geometrie und Praktische MathematikRWTH Aachen UniversityAachenGermany
  6. 6.Mathematical Sciences CenterTsinghua UniversityHaidian DistrictChina

Personalised recommendations