Advertisement

Optimal Decay Rate for the Compressible Flow of Liquid Crystals in \(L^p\) Type Critical Spaces

  • Qunyi Bie
  • Qiru Wang
  • Zheng-an Yao
Article

Abstract

The purpose of this paper is to establish the optimal time decay rate of solutions for the compressible flow of nematic liquid crystals in \(L^p\) type critical framework and any dimension \(N\ge 2\). Concretely, if the low frequencies of the initial data are in e.g. \(L^{p/2}(\mathbb {R}^N)\), we could obtain that the \(L^p\) norm of the critical global solution \((\rho -1,\mathbf{u})\) decays like \(t^{-\frac{N}{p}+ \frac{N}{4}}\), while the \(L^p\) norm of \(\mathbf{d}-\hat{\mathbf{d}}\) decays like \(t^{-\frac{N}{2p}}\) for \(t\rightarrow \infty \), exactly as shown in the work by Gao et al. (J Differ Equ 261:2334–2383, 2016) when \(p=2\) and \(N=3\), for solutions with high Sobolev regularity. As a by-product, we derive an accurate description of the time decay rates, not only for Lebesgue spaces, but also for a family of Besov norms with negative or nonnegative regularity exponents, which improves the decay results in high Sobolev regularity. The main tools used here are the Littlewood–Paley theory and refined time weighted inequalities in Fourier space.

Keywords

Time-decay rates Liquid crystal flow Critical spaces \(L^p\) framework 

Mathematics Subject Classification

35Q35 35B40 76A15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

References

  1. 1.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  2. 2.
    Bie, Q., Wang, Q., Yao, Z.: Optimal decay rate for the compressible Navier–Stokes–Poisson system in the critical \(L^p\) framework. J. Differ. Equ. 263, 8391–8417 (2017)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Bie, Q., Cui, H., Wang, Q., Yao, Z.: Incompressible limit for the compressible flow of liquid crystals in \({L}^p\) type critical Besov spaces. Discrete Contin. Dyn. Syst. Ser. A 38, 2879–2910 (2018)CrossRefGoogle Scholar
  4. 4.
    Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Supér. (4) 14, 209–246 (1981)CrossRefzbMATHGoogle Scholar
  5. 5.
    Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical \({L}^p\) framework. Arch. Ration. Mech. Anal. 198, 233–271 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chemin, J.-Y.: Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel. J. Anal. Math. 77, 25–50 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Chemin, J.-Y., Gallagher, I., Iftimie, D., Ball, J., Welsh, D.: Perfect Incompressible Fluids. Clarendon Press, Oxford (1998)Google Scholar
  9. 9.
    Dai, M., Qing, J., Schonbek, M.: Asymptotic behavior of solutions to liquid crystal systems in \({R}^3\). Commun. Partial Differ. Equ. 37, 2138–2164 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dai, M., Schonbek, M.: Asymptotic behavior of solutions to the liquid crystal system in \({H}^m(\mathbb{R}^3)\). SIAM J. Math. Anal. 46, 3131–3150 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Danchin, R.: Zero Mach number limit in critical spaces for compressible Navier–Stokes equations. Ann. Sci. École Norm. Supér. (4) 35, 27–75 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Danchin, R.: Fourier analysis methods for the compressible Navier-Stokes equations. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham (2016)Google Scholar
  14. 14.
    Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier–Stokes equations in the critical \({L}^p\) framework. Arch. Ration. Mech. Anal. 224, 53–90 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ding, S., Lin, J., Wang, C., Wen, H.: Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete Contin. Dyn. Syst. 32, 539–563 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ding, S., Wang, C., Wen, H.: Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete Contin. Dyn. Syst. Ser. B 15, 357–371 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ericksen, J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gao, J., Tao, Q., Yao, Z.: Long-time behavior of solution for the compressible nematic liquid crystal flows in \({R}^3\). J. Differ. Equ. 261, 2334–2383 (2016)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Guo, Y., Wang, Y.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 202, 427–460 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Haspot, B.: Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces. J. Differ. Equ. 251, 2262–2295 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hoff, D., Zumbrun, K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hoff, D., Zumbrun, K.: Pointwise decay estimates for multidimensional Navier–Stokes diffusion waves. Z. Angew. Math. Phys. 48, 597–614 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hong, M.-C.: Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40, 15–36 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hu, X., Wu, H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45, 2678–2699 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Huang, T., Wang, C., Wen, H.: Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch. Ration. Mech. Anal. 204, 285–311 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252, 2222–2265 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jiang, F., Jiang, S., Wang, D.: On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265, 3369–3397 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214, 403–451 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kagei, Y., Kobayashi, T.: On large-time behavior of solutions to the compressible Navier–Stokes equations in the half space in \(\mathbb{R}^3\). Arch. Ration. Mech. Anal. 165, 89–159 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kagei, Y., Kobayashi, T.: Asymptotic behavior of solutions of the compressible Navier–Stokes equations on the half space. Arch. Ration. Mech. Anal. 177, 231–330 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kobayashi, T.: Some estimates of solutions for the equations of motion of compressible viscous fluid in the three-dimensional exterior domain. J. Differ. Equ. 184, 587–619 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \(\mathbb{R}^3\). Commun. Math. Phys. 200, 621–659 (1999)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lin, F., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Lin, F., Wang, C.: Global existence of weak solutions of the nematic liquid crystal flow in dimension three. Commun. Pure Appl. Math. 69, 1532–1571 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lin, J., Lai, B., Wang, C.: Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three. SIAM J. Math. Anal. 47, 2952–2983 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Liu, T.-P., Wang, W.: The pointwise estimates of diffusion wave for the Navier–Stokes systems in odd multi-dimensions. Commun. Math. Phys. 196, 145–173 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci. 55, 337–342 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Okita, M.: Optimal decay rate for strong solutions in critical spaces to the compressible Navier–Stokes equations. J. Differ. Equ. 257, 3850–3867 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. TMA 9, 399–418 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, vol. 3. Walter de Gruyter, Berlin (1996)CrossRefzbMATHGoogle Scholar
  47. 47.
    Wu, H.: Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 26, 379–396 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of Science and Three Gorges Mathematical Research CenterChina Three Gorges UniversityYichangPeople’s Republic of China
  2. 2.School of MathematicsSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations