Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 3, pp 1229–1247 | Cite as

The KP Approximation Under a Weak Coriolis Forcing

  • Benjamin Melinand
Article

Abstract

In this paper, we study the asymptotic behavior of weakly transverse water-waves under a weak Coriolis forcing in the long wave regime. We derive the Boussinesq–Coriolis equations in this setting and we provide a rigorous justification of this model. Then, from these equations, we derive two other asymptotic models. When the Coriolis forcing is weak, we fully justify the rotation-modified Kadomtsev–Petviashvili equation (also called Grimshaw–Melville equation). When the Coriolis forcing is very weak, we rigorously justify the Kadomtsev–Petviashvili equation. This work provides the first mathematical justification of the KP approximation under a Coriolis forcing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to thank Jean-Claude Saut for the fruitful discussions about the KP approximation.

Compliance with ethical standards

Conflict of interest

The Author declares that they have no competing interests or any potential conflict of interest.

References

  1. 1.
    Ben Youssef, W., Lannes, D.: The long wave limit for a general class of 2d quasilinear hyperbolic problems. Commun. Partial Differ. Equ. 27(5–6), 979–1020 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bourgain, J.: On the Cauchy problem for the Kadomtsev–Petviashvili equation. Geom. Funct. Anal. 3(4), 315–341 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Castro, A., Lannes, D.: Fully nonlinear long-wave models in the presence of vorticity. J. Fluid Mech. 759, 642–675 (2014). 11ADSCrossRefMATHGoogle Scholar
  4. 4.
    Castro, A., Lannes, D.: Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity. Indiana Univ. Math. J. 64(4), 1169–1270 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, R.M., Hur, V.M., Liu, Y.: Solitary waves of the rotation-modified Kadomtsev–Petviashvili equation. Nonlinearity 21(12), 2949–2979 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Craig, W., Sulem, C., Sulem, P.-L.: Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5(2), 497–522 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Germain, J.P., Renouard, D.P.: On permanent nonlinear waves in a rotating fluid. Fluid Dyn. Res. 7(5–6), 263 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Gill, A.E.: Atmosphere-Ocean Dynamics. International Geophysics. Elsevier Science, Amsterdam (1982)Google Scholar
  9. 9.
    Grimshaw, R.: Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math. 73(1), 1–33 (1985)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grimshaw, R., Melville, W.K.: On the derivation of the modified Kadomtsev–Petviashvili equation. Stud. Appl. Math. 80(3), 183–202 (1989)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grimshaw, R.H.J., Ostrovsky, L.A., Shrira, V.I., Stepanyants, YuA: Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Geophys. 19(4), 289–338 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Lannes, D.: The water waves problem. volume 188 of mathematical surveys and monographs. In: Mathematical Analysis and Asymptotics, American Mathematical Society, Providence (2013)Google Scholar
  13. 13.
    Lannes, D., Saut, J.C.: Weakly transverse Boussinesq systems and the Kadomtsev–Petviashvili approximation. Nonlinearity 19(12), 2853–2875 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    LeBlond, P.H., Mysak, L.A.: Waves in the Ocean. In: Elsevier Oceanography Series. Elsevier Science (1981)Google Scholar
  15. 15.
    Melinand, B.: Coriolis effect on water waves. ESAIM: M2AN 51(5), 1957–1985 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Melinand, B.: Long wave approximation for water waves under a Coriolis forcing and the Ostrovsy equation. Proc. R. Soc. Edinb., Sect. A, Math., To appear, (2017)Google Scholar
  17. 17.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1992). Springer study editionMATHGoogle Scholar
  18. 18.
    Richard, G.L., Gavrilyuk, S.L.: A new model of roll waves: comparison with Brock’s experiments. J. Fluid Mech. 698, 374–405 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Saut, J.C.: Remarks on the generalized Kadomtsev–Petviashvili equations. Indiana Univ. Math. J. 42(3), 1011–1026 (1993)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Teshukov, V.M.: Gas-dynamic analogy for vortex free-boundary flows. J. Appl. Mech. Tech. Phys. 48(3), 303–309 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ukai, S.: Local solutions of the Kadomtsev–Petviashvili equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math 36(2), 193–209 (1989)MathSciNetMATHGoogle Scholar
  22. 22.
    Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Applied Mech. Tech. Phys. 9, 190–194 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indiana UniversityIndianapolisUSA

Personalised recommendations