Journal of Mathematical Fluid Mechanics

, Volume 20, Issue 3, pp 1137–1154 | Cite as

On Liapunov and Exponential Stability of Rossby–Haurwitz Waves in Invariant Sets of Perturbations

  • Yuri N. SkibaEmail author


In this work, the stability of the Rossby–Haurwitz (RH) waves from the subspace \(\mathbf {H}_{1}\oplus \mathbf {H}_{n}\) is considered (\(n\ge 2\)) where \(\mathbf {H}_{k}\) is the subspace of the homogeneous spherical polynomials of degree k. A conservation law for arbitrary perturbations of the RH wave is derived, and all perturbations are divided into three invariant sets \(\mathbf {M}_{-}^{n}\), \(\mathbf {M}_{0}^{n}\) and \(\mathbf {M} _{+}^{n}\) in which the mean spectral number \(\chi (\psi ^{\prime })\) of any perturbation \(\psi ^{\prime }\) is less than, equal to or greater than \( n(n+1) \), respectively. In turn, the set \(\mathbf {M}_{0}^{n}\) is divided into the invariant subsets \(\mathbf {H}_{n}\) and \(\mathbf {M}_{0}^{n}{\setminus } \mathbf {H}_{n}\). Quotient spaces and norms of the perturbations are introduced, a hyperbolic law for the perturbations belonging to the sets \(\mathbf {M}_{-}^{n}\) and \(\mathbf {M}_{+}^{n}\) is derived, and a geometric interpretation of variations in the kinetic energy of perturbations is given. It is proved that any non-zonal RH wave from \(\mathbf {H}_{1}\oplus \mathbf {H} _{n}\) (\(n\ge 2\)) is Liapunov unstable in the invariant set \(\mathbf {M} _{-}^{n}\). Also, it is shown that a stationary RH wave from \(\mathbf {H} _{1}\oplus \mathbf {H}_{n}\) may be exponentially unstable only in the invariant set \(\mathbf {M}_{0}^{n}{\setminus } \mathbf {H}_{n}\), while any perturbation of the invariant set \(\mathbf {H}_{n}\) conserves its form with time and hence is neutral. Since a Legendre polynomial flow \(aP_{n}(\mu )\) and zonal RH wave \(-\,\omega \mu +aP_{n}(\mu )\) are particular cases of the RH waves of \(\mathbf {H} _{1}\oplus \mathbf {H}_{n}\), the major part of the stability results obtained here is also true for them.


Rossby–Haurwitz wave Invariant sets of perturbations Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was partially supported by the grant No. 14539 of the National System of Researchers of Mexico (SNI, CONACyT).


  1. 1.
    Andronov, A.A., Witt, A.A., Chaikin, S.E.: Theory of Oscillations. Princeton University Press, Princeton (1949)Google Scholar
  2. 2.
    Baines, P.G.: The stability of planetary waves on a sphere. J. Fluid Mech. 73(2), 193–213 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blinova, E.N.: On the determination of the velocity of troughs employing the non-linear vorticity equation. Akad. Nauk SSSR Prikl. Mat. Mech. 10, 669–670 (1946). (in Russian) MathSciNetGoogle Scholar
  4. 4.
    Criminale, W.O., Jackson, T.L., Joslin, R.D.: Theory and Computation in Hydrodynamic Stability. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dikii, L.A.: Hydrodynamic Stability and Atmosphere Dynamics. Gidrometeoizdat, Leningrad (1976). (in Russian) Google Scholar
  6. 6.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)zbMATHGoogle Scholar
  7. 7.
    Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry—Methods and Applications—Part I—The Geometry of Surfaces, Transformation Groups, and Fields. Springer, New York (1992)zbMATHGoogle Scholar
  8. 8.
    Fjörtoft, R.: Application of integral theorems in deriving criteria of stability of laminar flow and for the baroclinic circular vortex. Geofysiske Publikasjoner utgitt av det Norske Videnskaps-Akademi i Oslo 17, 1–52 (1950)MathSciNetGoogle Scholar
  9. 9.
    Fjörtoft, R.: On the changes in the spectral distribution of kinetic energy for two-dimensional nondivergent flow. Tellus 5(3), 225–230 (1953)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gill, A.E.: Atmosphere–Ocean Dynamics. Academic Press, New York (1982)Google Scholar
  11. 11.
    Haurwitz, B.: The motion of atmospheric disturbances on the spherical earth. J. Mar. Res. 3, 254–267 (1940)Google Scholar
  12. 12.
    Helgason, S.: Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions. Academic Press, Orlando (1984)zbMATHGoogle Scholar
  13. 13.
    Hoskins, B.J.: Stability of the Rossby–Haurwitz wave. Q. J. R. Meteorol. Soc. 99, 723–745 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    Hoskins, B.J., Hollingsworth, A.: On the simplest example of the barotropic instability of Rossby wave motion. J. Atmos. Sci. 30(1), 150–153 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    Karunin, A.B.: On Rossby waves in barotropic atmosphere in the presence of zonal flow. Izv. Atmos. Ocean. Phys. 6(11), 1091–1100 (1970)MathSciNetGoogle Scholar
  16. 16.
    Kuo, H.-L.: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol. 6, 105–122 (1949)CrossRefGoogle Scholar
  17. 17.
    Liapunov, A.M.: Stability of Motion. Academic Press, New York (1966)Google Scholar
  18. 18.
    Lorenz, E.N.: Barotropic instability of Rossby wave motion. J. Atmos. Sci. 29, 258–264 (1972)ADSCrossRefGoogle Scholar
  19. 19.
    Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1994)CrossRefzbMATHGoogle Scholar
  20. 20.
    McIntyre, M.E., Shepherd, T.G.: An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnol’d stability theorems. J. Fluid Mech. 181, 527–565 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser, Basel (2013)zbMATHGoogle Scholar
  22. 22.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)CrossRefzbMATHGoogle Scholar
  23. 23.
    Petroni, R., Pierini, S., Vulpiani, A.: The double cascade as a necessary mechanism for the instability of steady equivalent-barotropic flows. Nuovo Cimento C 10, 27–36 (1987)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Petroni, R., Pierini, S., Vulpiani, A.: Reply to a note by T.G. Shepherd. Nuovo Cimento C 12(2), 271–275 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    Rayleigh, L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. s1–11(1), 57–72 (1879)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Richtmyer, R.D.: Principles of Advanced Mathematical Physics, vol. 1 (1978); vol. 2 (1981). Springer, New York (1978)Google Scholar
  27. 27.
    Rossby, C.-G.: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2, 38–55 (1939)CrossRefGoogle Scholar
  28. 28.
    Shepherd, T.G.: Remarks concerning the double cascade as a necessary mechanism for the instability of steady equivalent-barotropic flows. Il Nuovo Cimento C 11(4), 439–442 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    Shutyaev, V.P.: Data mastery in a scale of Hilbert spaces for quasilinear evolution problems. Differ. Equ. 34, 382–388 (1998)zbMATHGoogle Scholar
  30. 30.
    Skiba, Y.N.: On dimension of attractive sets of viscous fluids on a sphere under quasi-periodic forcing. Geophys. Astrophys. Fluid Dyn. 85, 233–242 (1997)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Skiba, Y.N.: On the normal mode instability of harmonic waves on a sphere. Geophys. Astrophys. Fluid Dyn. 92(1–2), 115–127 (2000)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Skiba, Y.N., Strelkov, A.Y.: On the normal mode instability of modons and Wu-Verkley waves. Geophys. Astrophys. Fluid Dyn. 93(1–2), 39–54 (2000)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Skiba, Y.N.: Mathematical Problems of the Dynamics of Incompressible Fluid on a Rotating Sphere. Springer International Publishing AG, Cham (2017)CrossRefzbMATHGoogle Scholar
  34. 34.
    Szeptycki, P.: Equations of hydrodynamics on manifold diffeomorphic to the sphere. Bull. Acad. Pol. Sci. Serie Sci. Math. Astr. Phys. 21(4), 341–344 (1973)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Thompson, P.D.: A generalized class of exact time-dependent solutions of the vorticity equation for nondivergent barotropic flow. Mon. Weather Rev. 110, 1321–1324 (1982)ADSCrossRefGoogle Scholar
  36. 36.
    Tung, K.K.: Barotropic instability of zonal flows. J. Atmos. Sci. 38, 308–321 (1981)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Zubov, V.I.: Methods of A.M. Lyapunov and Their Application. Noordhoff Ltd., Groningen (1964)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Ciencias de la AtmósferaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations