Skip to main content
Log in

Stability Analysis for the Incompressible Navier–Stokes Equations with Navier Boundary Conditions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2022

This article has been updated

Abstract

This paper is concerned with the instability and stability of the trivial steady states of the incompressible Navier–Stokes equations with Navier-slip boundary conditions in a slab domain in dimension two. The main results show that the stability (or instability) of this constant equilibrium depends crucially on whether the boundaries dissipate energy and the strengthen of the viscosity and slip length. It is shown that in the case that when all the boundaries are dissipative, then nonlinear asymptotic stability holds true. Otherwise, there is a sharp critical viscosity, which distinguishes the linear and nonlinear stability from instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flow over periodic rough boundaries. J. Comput. Phys. 147, 187–218 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Rejaiba, A.: \(L^p\)-theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Eqs. 256, 1515–1547 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amrouche, C., Seloula, N.H.: On the Stokes equations with the Navier-type boundary conditions. Differ. Eqs. Appl. 3(4), 581–607 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Antontsev, S., de Oliveira, H.: Navier-Stokes equations with absorption under slip boundary conditions: existence, uniqueness and extinction in time. RIMS Kôkyûroku Bessatsu B1, 21–41 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bänsch, E.: Finite element discretization of the Navier–Stokes equations with free capillary surface. Numer. Math. 88, 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  ADS  Google Scholar 

  7. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics. Clarendon Press, Oxford (1961)

    Google Scholar 

  8. Chauhan, D.S., Shekhawat, K.S.: Heat transfer in Couette flow of a compressible Newtonian fluid in the presence of a naturally permeable boundary. J. Phys. D Appl. Phys. 26, 933–936 (1993)

    Article  ADS  Google Scholar 

  9. Drazin, P., Reid, W.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  10. Gie, G.M., Kelliher, J.P.: Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions. J. Differ. Eqs. 253, 1862–1892 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Guo, Y., Hallstrom, C., Spirn, D.: Dynamics near unstable, interfacial fluids. Commun. Math. Phys. 270, 635–689 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Han, Y.: Critical Rayleigh number in Rayleigh–Bénard convection. Q. Appl. Math. 68(1), 149–160 (2010)

    Article  MATH  Google Scholar 

  13. Guo, Y., Tice, I.: Linear Rayleigh–Taylor instability for viscous, compressible fluid. SIMA J. Math. Anal. 42(4), 1688–1720 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, Y., Tice, I.: Compressible, inviscid Rayleigh–Taylor instability. Indiana Univ. Math. J. 60(2), 677–712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Y., Tice, I.: Stability of contact line in fluids: 2D STOKES flow (2017). arXiv:1603.03721v1

  16. Haase, A.S., Wood, J.A., Lammertink, R.G.H., Snoeijer, J.H.: Why bumpy is better: the role of the dissipaption distribution in slip flow over a bubble mattress. Phys. Rev. Fluid 1, 054101 (2016)

    Article  ADS  Google Scholar 

  17. Jäger, W., Mikelić, A.: On the Roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Eqs. 170, 96–122 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, F., Jiang, S., Ni, G.: Nonlinear instability for nonhomogeneous incompressible viscous fluids. Sci. China Math. 56(4), 665–686 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, F., Jiang, S.: On instability and stability of three-dimensional gravity driven viscous flows in a boundary domain. Adv. Math. 264, 831–863 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. John, V.: Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equation-numerical test and aspect of the implementation. J. Comput. Appl. Math. 147, 287–300 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kelliher, J.P.: Navier–Stokes equations with Navier boundary conditions for a bounded domain in plane. SIAM J. Math. Anal. 38(1), 210–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ladyzhenskaya, O.A.: Mathematical Theory of Viscous Incompressible Flow. Gordon, New York (1969)

    MATH  Google Scholar 

  24. Li, H., Zhang, X.: Stability of plane Couette flow for the compressible Navier–Stokes equations with Navier-slip boundary (2016). Preprint

  25. Magnaudet, J., Riverot, M., Fabre, J.: Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97–135 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Navier, C.: Sur les lois de léquilibre et du mouvement des corps élastiques. Mem. Acad. R. Sci. Inst. France 6, 369 (1827)

    Google Scholar 

  27. Qian, T., Wang, X., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306 (2003)

    Article  ADS  Google Scholar 

  28. Serrin, J.: Mathematical principles of classical fluid mechanics. In: Truesdell, C. (ed.) Fluid Dynamics I. Encyclopedia of Physics, pp. 125–263. Springer, Berlin (1959)

  29. Solonnikov, V., Ščadilov, V.: A certain boundary value problem for the stationary system of Navier–Stokes equations. Trudy Mat. Inst. Steklov. 125, 196–210 (1973); translation in Proc. Steklov Inst. Math., 125, 1973, 186-199

  30. Temam, R.: Navier–Stokes Equations, Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984)

    Google Scholar 

  31. da Veiga, H.B.: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions. Commun. Pure Appl. Math. LVIII, 552–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Y., Tice, I.: The viscous surface-internal wave problem: nonlinear Rayleigh–Taylor instability. Commun Partial Differ. Eqs. 37, 1967–2028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Yanjin, Tice, Ian, Kim, Chanwoo: The viscous surface-internal wave problem: global well-posedness and decay. Arch. Ration. Mech. Anal. 212, 1–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y., Xin, Z.: Vanishing viscosity and surface tension limits of incompressible viscous surface waves. arXiv:1504.00152

  35. Xiao, Y., Xin, Z.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60, 1027–1055 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiao, Y., Xin, Z.: On the inviscid limit of the 3D Navier–Stokes equations with generalized Navier-slip boundary conditions. Commun. Math. Stat. 1(3), 259–279 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanrong Li.

Additional information

Communicated by G. P. Galdi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Li, Q. & Xin, Z. Stability Analysis for the Incompressible Navier–Stokes Equations with Navier Boundary Conditions. J. Math. Fluid Mech. 20, 603–629 (2018). https://doi.org/10.1007/s00021-017-0337-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0337-2

Mathematics Subject Classification

Keywords

Navigation