Journal of Mathematical Fluid Mechanics

, Volume 19, Issue 3, pp 423–444 | Cite as

Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

  • Jiahong Wu
  • Xiaojing Xu
  • Zhuan Ye


This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.


Euler equation surface quasi-geostrophic equation Boussinesq equations partial dissipation global regularity 

Mathematics Subject Classification

35A05 35B45 35B65 76D03 76D09 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adhikari D., Cao C., Shang H., Wu J., Xu X., Ye Z.: Global regularity results for the 2D Boussinesq equations with partial dissipation. J Differ. Equations 260, 1893–1917 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adhikari D., Cao C., Wu J.: The 2D Boussinesq equations with vertical viscosity and vertical diffusivity. J Differ. Equations 249, 1078–1088 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Adhikari D., Cao C., Wu J.: Global regularity results for the 2D Boussinesq equations with vertical dissipation. J Differ. Equations 251, 1637–1655 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, New york (2011)Google Scholar
  5. 5.
    Bardos C., Titi E.: Euler equations of incompressible ideal fluids. Russ. Math. Surv. 62(3), 409–451 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cao C., Regmi D., Wu J.: The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J Differ. Equations 254, 2661–2681 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cao C., Wu J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cao C., Wu J.: Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 208, 985–1004 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chae D.: The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity 16, 479–495 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chae D., Lee J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233, 297–311 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chae D., Constantin P., Córdoba D., Gancedo F., Wu J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65, 1037–1066 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chae D., Constantin P., Wu J.: Inviscid models generalizing the 2D Euler and the surface quasi-geostrophic equations. Arch. Ration. Mech. Anal. 202, 35–62 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chae D., Córdoba A., Córdoba D., Fontelos M.: Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. 194, 203–223 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chemin, J.-Y.: Perfect incompressible Fluids, Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Chen Q., Miao C., Zhang Z.: A new Bernstein’s inequality and the 2D dissipative quasigeostrophic equation. Commun. Math. Phys. 271, 821–838 (2007)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Constantin P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. (N.S.) 44(4), 603–621 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Constantin P.: Singular, weak and absent: solutions of the Euler equations. Phys. D 237, 1926–1931 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Constantin P., Córdoba D., Wu J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Constantin P., Doering C.: Heat transfer in convective turbulence. Nonlinearity 9, 1049–1060 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Constantin P., Lai M.-C., Sharma R., Tseng Y.-H., Wu J.: New numerical results for the surface quasi-geostrophic equation. J. Sci. Comput. 50, 1–28 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Constantin P., Nie Q., Schörghofer N.: Nonsingular surface quasi-geostrophic flow. Phys. Lett. A 241, 168–172 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Constantin P., Vicol V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Constantin P., Wu J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1103–1110 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Constantin P., Wu J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 159–180 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Córdoba D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. 148, 1135–1152 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Córdoba D., Fefferman Ch.: Behavior of several two-dimensional fluid equations in singular scenarios. Proc. Natl. Acad. Sci. USA 98, 4311–4312 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Córdoba D., Fefferman Ch.: Scalars convected by a two-dimensional incompressible flow. Commun. Pure Appl. Math. 55, 255–260 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Córdoba D., Fefferman Ch.: Growth of solutions for QG and 2D Euler equations. J. Am. Math. Soc. 15, 665–670 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Coti Zelati, M., Vicol V.: On the global regularity for the supercritical SQG equation. Indiana Univ. Math. J. (2016) (in press)Google Scholar
  34. 34.
    Dabkowski M.: Eventual regularity of the solutions to the supercritical dissipative quasigeostrophic equation. Geom. Funct. Anal. 21, 1–13 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Danchin R., Paicu M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21, 421–457 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Deng J., Hou Y.T., Li R., Yu X.: Level set dynamics and the non-blowup of the 2D quasi-geostrophic equation. Methods Appl. Anal. 13, 157–180 (2006)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Dong H., Pavlovic N.: A regularity criterion for the dissipation quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1607–1619 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Doering C., Otto F., Reznikoff M.G.: Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Benard convection. J. Fluid Mech. 560, 229–241 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hölder E.: Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit. Math. Z. 37, 727–738 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ibrahim H.: A generalization of a logarithmic Sobolev inequality to the Hölder class. J. Funct. Spaces Appl., 15 (2012) (Art. ID: 148706)Google Scholar
  41. 41.
    Kato, T.: Liapunov functions and monotonicity in the Euler and Navier-Stokes equations, Lecture Notes in Mathematics, vol. 1450. Springer, Berlin (1990)Google Scholar
  42. 42.
    Kiselev A.: Nonlocal maximum principles for active scalars. Adv. Math. 227, 1806–1826 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Kiselev A., Nazarov F.: A variation on a theme of Caffarelli and Vasseur. Zap Nauchn. Sem. POMI 370, 58–72 (2010)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Kiselev A., Sverak V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. 180, 1205–1220 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Larios A., Lunasin E., Titi E.S.: Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. J. Differ. Equations 255, 2636–2654 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Lei Z., Zhou Y.: BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin. Dyn. Syst. 25, 575–583 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes, vol. 9. Courant Institute of Mathematical Sciences and American Mathematical Society, USA (2003)Google Scholar
  49. 49.
    Majda A., Bertozzi A.: Vorticity and incompressible flow. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  50. 50.
    Miao C., Xue L.: On the regularity of a class of generalized quasi-geostrophic equations. J. Differ. Equations 251, 2789–2821 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Miao C., Xue L.: Global wellposedness for a modified critical dissipative quasi-geostrophic equation. J. Differ. Equations 252, 792–818 (2012)ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Ohkitani K., Yamada M.: Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow. Phys. Fluids 9, 876–882 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Ogawa T.: Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow. SIAM J. Math. Anal. 34, 1318–1330 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Pedlosky, J.: Geophysical fluid dynamics. Springer, New York (1987)Google Scholar
  55. 55.
    Resnick, S.: Dynamical problems in non-linear advective partial differential equations. Pro-Quest LLC, Ann Arbor, MI. Thesis (Ph.D.), The University of Chicago (1995)Google Scholar
  56. 56.
    Schonbek M., Schonbek T.: Asymptotic behavior to dissipative quasi-geostrophic flows. SIAM J. Math. Anal. 35, 357–375 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Silvestre L.: Eventual regularization for the slightly supercritical quasi-geostrophic equation. Ann. Inst. H. Poincare Anal. Non Lineaire 27, 693–704 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Stein, E.: Singular integrals and differentiability properties of functions. Princeton Unviersity Press, Princeton, NJ (1970)Google Scholar
  59. 59.
    Triebel, H.: Theory of Function Spaces II. Birkhauser Verlag (1992)Google Scholar
  60. 60.
    Wang H., Zhang Z.: A frequency localized maximum principle applied to the 2D quasi-geostrophic equation. Commun. Math. Phys. 301, 105–129 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Wolibner W.: Un théorème sur l’existence du mouvement plan d’un fluide parfait. Math. Z. 37, 698–726 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Wu J.: The quasi-geostrophic equation and its two regularizations. Commun. Partial Differ. Equations 27, 1161–1181 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Wu J., Xu X., Ye Z.: Global smooth solutions to the n-dimensional damped models of incompressible fluid mechanics with small initial datum. J. Nonlinear Sci. 25, 157–192 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Yamazaki K.: On the regularity criteria of a surface quasi-geostrophic equation. Nonlinear Anal. 75, 4950–4956 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of MathematicsOklahoma State UniversityStillwaterUSA
  2. 2.Laboratory of Mathematics and Complex Systems, Ministry of EducationSchool of Mathematical Sciences, Beijing Normal UniversityBeijingPeople’s Republic of China
  3. 3.Department of Mathematics and StatisticsJiangsu Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations