Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 18, Issue 2, pp 381–396 | Cite as

Global Existence of Strong Solutions to the Cucker–Smale–Stokes System

  • Hyeong-Ohk Bae
  • Young-Pil Choi
  • Seung-Yeal Ha
  • Moon-Jin Kang
Article

Abstract

A coupled kinetic–fluid model describing the interactions between Cucker–Smale flocking particles and a Stokes fluid is presented. We demonstrate the global existence and uniqueness of strong solutions to this coupled system in a three-dimensional spatially periodic domain for initial data that are sufficiently regular, but not necessarily small.

Keywords

Kinetic–fluid equations Cucker–Smale model Vlasov equations Stokes equations 

Mathematics Subject Classification

Primary 92D25 Secondary 74A25 Tertiary 76N10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bae H.-O., Choi Y.-P., Ha S.-Y., Kang M.-J.: Global existence of strong solution for the Cucker–Smale–Navier–Stokes system. J. Differ. Equ. 257, 2225–2255 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bae H.-O., Choi Y.-P., Ha S.-Y., Kang M.-J.: Time-asymptotic interaction of flocking particles and an incompressible viscous fluid. Nonlinearity 25, 1155–1177 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bae H.-O., Choi Y.-P., Ha S.-Y., Kang M.-J.: Asymptotic flocking dynamics of Cucker–Smale particles immersed in compressible fluids. Discrete Contin. Dyn. Syst. 34, 4419–4458 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boudin L., Desvillettes L., Grandmont C., Moussa A.: Global existence of solution for the coupled Vlasov and Navier–Stokes equations. Differ. Integral Equ. 22, 1247–1271 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Carrillo, J. A., Choi, Y.-P., Karper, T. K.: On the analysis of a coupled kinetic-fluid model with local alignment forces. Ann. I. H. Poincaré – AN (2014). doi: 10.1016/j.anihpc.2014.10.002
  6. 6.
    Chae M., Kang K., Lee J.: Global existence of weak and classical solutions for the Navier–Stokes–Vlasov–Fokker–Planck equations. J. Differ. Equ. 251, 2431–2465 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Choi Y.-P., Lee J.: Global existence of weak and strong solutions to Cucker–Smale–Navier–Stokes equations in \({{\mathbb R}^2}\). Nonlinear Anal. Real World Appl. 27, 158–182 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Choi Y.-P., Kwon B.: Two-species flocking particles immersed in a fluid. Commun. Inf. Syst. 13, 123–149 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Choi Y.-P., Kwon B.: Global well-posedness and large-time behavior for the inhomogeneous Vlasov–Navier–Stokes equations. Nonlinearity 28, 3309–3336 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Constantin P., Fefferman C., Titi E., Zarnescu A.: Regularity for coupled two dimensional nonlinear Fokker–Planck and Navier–Stokes systems. Commun. Math. Phys. 270, 789–811 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Constantin P., Seregin G.: Global regularity of solutions of coupled Navier–Stokes equations and nonlinear Fokker–Planck equations. Discrete Contin. Dyn. Syst. 26, 1185–1196 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Giga Y., Sohr H.: Abstract L p estimates for the Cauchy problem with applications of Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ha S.-Y., Tadmor E.: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Models 1, 415–435 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ha S.-Y., Kang M.-J., Kwon B.: A hydrodynamic model for the interaction of Cucker–Smale particles and incompressible fluid. Math. Mod. Methods. Appl. Sci. 24, 2311–2359 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hamdache K.: Global existence and large time behavior of solutions for the Vlasov–Stokes equations. Jpn. J. Ind. Appl. Math. 15, 51–74 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Otto F., Tzavaras A.: Continuity of velocity gradients in suspension of rod-like molecules. Commun. Math. Phys. 277, 729–758 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Hyeong-Ohk Bae
    • 1
  • Young-Pil Choi
    • 2
  • Seung-Yeal Ha
    • 3
  • Moon-Jin Kang
    • 4
  1. 1.Department of Financial EngineeringAjou UniversitySuwonKorea
  2. 2.Department of MathematicsImperial College LondonLondonUK
  3. 3.Department of Mathematical SciencesSeoul National UniversitySeoulKorea
  4. 4.Department of Mathematical SciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations