Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 16, Issue 4, pp 745–769 | Cite as

On the Regularity of Weak Solutions to the MHD System Near the Boundary

  • V. Vialov
Article

Abstract

We obtain sufficient conditions of local regularity of suitable weak solutions to the MHD system for the points belonging to a C 3-smooth part of the boundary. Our results are some generalization of the known Caffarelli–Kohn–Nirenberg condition for the Navier–Stokes equations.

Keywords

MHD equations partial regularity weak solutions boundary regularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caffarelli L., Kohn R.V., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)MathSciNetCrossRefzbMATHADSGoogle Scholar
  2. 2.
    Escauriaza L., Seregin G., Sverak V.: L 3,∞-solutions to the Navier–Stokes equations and backward uniqueness. Uspekhi Matematicheskih Nauk 58(2), 3–44 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Filonov N.D., Shilkin T.N.: On the Stokes problem with non-zero divergence. Zap. Nauchn. Semin. POMI 370, 184–202 (2009)Google Scholar
  4. 4.
    Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934)Google Scholar
  6. 6.
    He C., Xin Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213(2), 235–254 (2005)MathSciNetCrossRefzbMATHADSGoogle Scholar
  7. 7.
    Ladyzhenskaya O.A., Seregin G.A.: On partial regularity of suitable weak solutions to the three-dimesional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. 8.
    Ladyzhenskaya, O.A., Solonnikov, V.A.: Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid, vol. 59, pp. 115–173. In: Proceedings of V.A. Steklov Mathematical Institute (in Russian) (1960)Google Scholar
  9. 9.
    Lin F.-H.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Mikhaylov A.S.: On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary. Zap. Nauchn. Semin. POMI 385, 83–97 (2010)Google Scholar
  11. 11.
    Scheffer V.: Hausdorff measure and Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. 12.
    Seregin G.A.: Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary. J. Math. Fluid Mech. 4(1), 1–29 (2002)MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. 13.
    Seregin G.A.: Differentiability properties of weak solutions of the Navier–Stokes equations. St.-Petersb. Math. J. 14(1), 147–178 (2003)MathSciNetGoogle Scholar
  14. 14.
    Seregin G.A.: Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations. Zap. Nauchn. Semin. POMI 271, 204–223 (2000)Google Scholar
  15. 15.
    Seregin, G.A.: Local regularity theory for the Navier–Stokes equations. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. IV. Elsevier, Amsterdam (2007)Google Scholar
  16. 16.
    Seregin G.A., Shilkin T.N., Solonnikov V.A.: Boundary patial regularity for the Navier–Stokes equations. Zap. Nauchn. Semin. POMI 310, 158–190 (2004)Google Scholar
  17. 17.
    Stein E.M.: Singulare Integrals and Differenciability Properties of Functions. Princeton university press, Prinseton (1970)Google Scholar
  18. 18.
    Vyalov, V.A.: Partial regularity of solutions of magnetohydrodynamic equations. Probl. Mat. Analiza 36, 3–13 (2007). English transl., J. Math. Sci. 150(1), 1771–1786 (2008)Google Scholar
  19. 19.
    Vyalov V.A.: On the local smoothness of weak solutions to the MHD system. Zap. Nauchn. Semin. POMI 370, 5–21 (2009)Google Scholar
  20. 20.
    Vyalov V., Shilkin T.: On the boundary regularity of weak solution to the MHD system. Zap. Nauchn. Semin. POMI 385, 18–53 (2010)Google Scholar
  21. 21.
    Vyalov V.: On the local smoothness of weak solutions to the MHD system near the boundary. Zap. Nauchn. Semin. POMI 397, 5–19 (2011)Google Scholar
  22. 22.
    Vyalov V., Shilkin T.: Estimates of solutions to the perturbed stokes system. Zap. Nauchn. Semin. POMI 410, 5–24 (2013)MathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Chebichev Laboraory, Saint-Petersburg State UniversityVasilyevsky Island, Saint PetersburgRussia

Personalised recommendations