Journal of Mathematical Fluid Mechanics

, Volume 16, Issue 4, pp 661–667 | Cite as

Instability of Equatorial Water Waves with an Underlying Current

Article

Abstract

In this paper we use the short-wavelength instability approach to derive an instability threshold for exact trapped equatorial waves propagating eastwards in the presence of an underlying current.

Mathematics Subject Classification (2010)

Primary 76B15 Secondary 76B47 35B50 26E05 

Keywords

Geophysical flows instability currents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayly, B.J.: Three-dimensional instabilities in quasi-two dimensional inviscid flows. In: Miksad, R.W., et al. (eds) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)Google Scholar
  2. 2.
    Bennett A.: Lagrangian fluid dynamics. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Constantin A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)MathSciNetCrossRefMATHADSGoogle Scholar
  4. 4.
    Constantin A.: Edge waves along a sloping beach. J. Phys. A 34, 9723–9731 (2001)MathSciNetCrossRefMATHADSGoogle Scholar
  5. 5.
    Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)MathSciNetCrossRefMATHADSGoogle Scholar
  6. 6.
    Constantin, A.: Nonlinear water waves with applications to wave-current interactions and Tsunamis. In: CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)Google Scholar
  7. 7.
    Constantin A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)CrossRefADSGoogle Scholar
  8. 8.
    Constantin A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Constantin A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)CrossRefADSGoogle Scholar
  10. 10.
    Constantin A.: On equatorial wind waves. Differ. Integral Equ. 26, 237–252 (2013)MathSciNetMATHGoogle Scholar
  11. 11.
    Constantin A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)CrossRefGoogle Scholar
  12. 12.
    Constantin A., Escher J.: Symmetry of steady deep-water waves with vorticity. Eur. J. Appl. Math. 15, 755–768 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Constantin A., Germain P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Constantin A., Strauss W.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)MathSciNetMATHGoogle Scholar
  15. 15.
    Cushman-Roisin, B., Beckers, J.-M.: Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic, Waltham (2011)Google Scholar
  16. 16.
    Drazin P.G.: Introduction to hydrodynamic stability. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Drazin P.G., Reid W.H.: Hydrodynamic stability. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Fedorov A.V., Brown J.N.: Equatorial waves. In: Steele, J. (eds) Encyclopedia of Ocean Sciences., pp. 3679–3695. Academic Press, San Diego (2009)Google Scholar
  19. 19.
    Friedlander S., Vishik M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys .Rev. Lett. 66, 2204–2206 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  20. 20.
    Friedlander S., Yudovich V.: Instabilities in fluid motion. Not. Am. Math. Soc. 46, 1358–1367 (1999)MathSciNetMATHGoogle Scholar
  21. 21.
    Friedlander, S.: Lectures on stability and instability of an ideal fluid. In: Hyperbolic equations and frequency interactions, IAS/Park City Mathematics Series, vol. 5, pp. 227–304. American Mathematical Social, Providence, RI (1999)Google Scholar
  22. 22.
    Gallagher I., Saint-Raymond L.: On the influence of the Earth’s rotation on geophysical flows. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Mechanics, vol. 4., pp. 201–329. North-Holland, Amsterdam (2007)Google Scholar
  23. 23.
    Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)CrossRefGoogle Scholar
  24. 24.
    Henry, D.: On the deep-water Stokes flow. Int. Math. Res. Not. 7 (2008)Google Scholar
  25. 25.
    Henry D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Henry D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Henry D., Matioc A.: On the existence of equatorial wind waves. Nonlinear Anal. 101, 113–123 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ionescu-Kruse D.: Particle trajectories in linearized irrotational shallow water flows. J. Nonlinear Math. Phys. 15, 13–27 (2008)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Ionescu-Kruse, D.: Instability of edge waves along a sloping beach. J. Diff. Equ. doi:10.1016/j.jde.2014.03.009
  30. 30.
    Izumo T.: The equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El Niño events in the tropical Pacific Ocean. Ocean Dyn. 55, 110–123 (2005)CrossRefADSGoogle Scholar
  31. 31.
    Leblanc S.: Local stability of Gerstner’s waves. J. Fluid Mech. 506, 245–254 (2004)MathSciNetCrossRefMATHADSGoogle Scholar
  32. 32.
    Lifschitz A., Hameiri E.: Local stability conditions in fluid dynamics. Phys. Fluids 3, 2644–2651 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  33. 33.
    Matioc A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, 365501 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mollo-Christensen E.: Gravitational and geostrophic billows: some exact solutions. J. Atmos. Sci. 35, 1395–1398 (1978)CrossRefADSGoogle Scholar
  35. 35.
    Stuhlmeier R.: On edge waves in stratified water along a sloping beach. J. Nonlinear Math. Phys. 18, 127–137 (2011)MathSciNetCrossRefMATHADSGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.School of Mathematical SciencesUniversity College CorkCorkIreland

Personalised recommendations