Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 15, Issue 3, pp 617–633 | Cite as

Irrotational Blowup of the Solution to Compressible Euler Equation

  • Takashi Suzuki
Article

Abstract

Compressible Euler equation is studied. First, we examine the validity of physical laws such as the conservations of total mass and energy and also the decay of total pressure. Then we show the non-existence of global-in-time irrotational solution with positive mass.

Mathematics Subject Classification (2010)

Primary 35L67 Secondary 35Q31 

Keywords

Compressible Euler equation Blowup Irrotational fluid Defect energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acheson D.J.: Elementary Fluid Dynamics. Oxford University Press, New York (1990)zbMATHGoogle Scholar
  2. 2.
    Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  3. 3.
    Kambe T.: Elementary Fluid Mechanics. World Scientific Publishing, Hackensack (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Makino T., Ukai S., Kawashima S.: Sur la solution à à support compact de léquatioin d’Euler compressible. Jpn. J. Appl. Math. 3, 249–257 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Nishida T.: Global solution for an initial-boundary value problem of a quasilinear hyperbolic systems. Proc. Jpn. Acad. 44, 642–646 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Nishida T., Smoller J.: Solutions in the large for some nonlinear hyperbolic conservation laws. Commun. Pure Appl. Math. 26, 183–200 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Perthame B.: Kinetic Formulation of Conservation Laws. London, Oxford (2002)zbMATHGoogle Scholar
  8. 8.
    Sideris T.C.: Formation of singularities in solutions to nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. 86, 369–381 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Sideris T.C.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101, 475–485 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Sideris T.C.: The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math. J. 40, 535–550 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Smoller J.: Shock Waves and Reaction-Diffusion Equations. Springer, Berlin (1982)Google Scholar
  12. 12.
    Xin Z.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering ScienceOsaka UniversityOsaka-fuJapan

Personalised recommendations