Journal of Mathematical Fluid Mechanics

, Volume 15, Issue 2, pp 425–430

Addendum to: Capillary Floating and The Billiard Ball Problem

Open Access
Article
  • 376 Downloads

Abstract

We compare the results of our earlier paper on the floating in neutral equilibrium at arbitrary orientation in the sense of Finn-Young with the literature on its counterpart in the sense of Archimedes. We add a few remarks of personal and social-historical character.

References

  1. 1.
    Aleksandrov A.D. et al.: Victor Abramovich Zalgaller (on his seventieth birthday). Russ. Math. Surv. 46, 257–259 (1991)MATHCrossRefGoogle Scholar
  2. 2.
    Auerbach H.: Sur un problem de M. Ulam concernant l’equilibre des corps flottants. Studia Mathematica 7, 121–142 (1938)Google Scholar
  3. 3.
    Auerbach H.: Sur une propriété caractéristique de l’ellipsoïde (Ukrainian summary). Studia Mathematica 9, 17–22 (1940)MathSciNetMATHGoogle Scholar
  4. 4.
    Auerbach H.: Geometry of the triangle (Polish). Wiadom. Mat. 29, 234–251 (1992)MathSciNetMATHGoogle Scholar
  5. 5.
    Bracho J., Montejano L., Oliveros D.: Carousels, Zindler curves and the floating body problem. Period. Math. Hungar 49, 9–23 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Derkowska A., Mikosz M., Neugebauer A.: Herman Auerbach (1901–1942) (Polish). Wiadom. Mat. 29, 225–231 (1992)MathSciNetMATHGoogle Scholar
  7. 7.
    Dyson F.J.: Missed opportunities. Bull. Am. Math. Soc. 78, 635–652 (1972)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Finn R.: Floating bodies subject to capillary attractions. J. Math. Fluid Mech. 11, 443–458 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Finn R.: Remarks on “Floating bodies in neutral equilibrium”. J. Math. Fluid Mech. 11, 466–467 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Finn R.: Criteria for floating I. J. Math. Fluid Mech. 13, 103–115 (2011)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Gericke H.: Einige kennzeichnende Eigenschaften des Kreises. Math. Z. 40, 417–420 (1936)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gutkin, E.: Billiard tables of constant width and dynamical characterizations of the circle. Workshop on dynamics and related questions, pp. 1–4, PennState University (1993)Google Scholar
  13. 13.
    Gutkin E.: Billiard dynamics: a survey with the emphasis on open problems. Reg. Chaot. Dyn. 8, 1–13 (2003)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gutkin E.: Capillary floating and the billiard ball problem. J. Math. Fluid Mech. 14, 363–382 (2012)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Gutkin, E.: Addendum to: Capillary floating and the billiard ball problem. arxiv:1206.2272 (2012)Google Scholar
  16. 16.
    Gutkin E., Katok A.: Caustics for inner and outer billiards. Commun. Math. Phys. 173, 101–133 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Kovalev M.D.: A characteristic property of a disc. Trudy Mat. Inst. Steklov 152, 124–137 (1980)MathSciNetMATHGoogle Scholar
  18. 18.
    Laplace P.S.: Traité de Méchanique Céleste Vol 4, Supplements au Livre X. Gauthier-Villars, Paris (1806)Google Scholar
  19. 19.
    Mauldin, R. (ed.): The Scottish Book. Mathematics from the Scottish Café. Birkhäuser, Boston (1981)MATHGoogle Scholar
  20. 20.
    Raphaël E., Meglio J.-M., Berger M., Calabi E.: Convex particles at interfaces. J. Phys. I France 2, 571–579 (1992)CrossRefGoogle Scholar
  21. 21.
    Ruban A.N.: Sur le probléme du cylindre flottant. C. R. (Doklady) Acad. Sci. URSS 25, 350–352 (1939)MathSciNetGoogle Scholar
  22. 22.
    Salgaller V., Kostelianetz P.: Sur le probléme du cylindre flottant. C. R. (Doklady) Acad. Sci. URSS 25, 353–355 (1939)MathSciNetGoogle Scholar
  23. 23.
    Salkowski, E.: Eine kennzeichnende Eigenschaft des Kreises. Sitz. Heidelb. Akad. Wissensch., Math.-Nat. Klasse, pp. 57–62 (1934)Google Scholar
  24. 24.
    Szurek M.: An introduction to Herman Auerbach’s paper “Geometry of the triangle” (Polish). Wiadom. Mat. 29, 232–234 (1992)MathSciNetMATHGoogle Scholar
  25. 25.
    Tabachnikov S.: Tire track geometry: variations on a theme. Isr. J. Math. 151, 1–28 (2006)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Varkonyi P.L.: Floating body problems in two dimensions. Stud. Appl. Math. 122, 195–218 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Wegner F.: Floating bodies of equilibrium. Stud. Appl. Math. 111, 167–183 (2003)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  29. 29.
    Zalgaller, V.A.: The dayly grind of war. manuscript in Russian (available on the internet)Google Scholar
  30. 30.
    Zindler K.: Über konvexe Gebilde. Monatsh. Math. Physik 30, 87–102 (1920)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of MathematicsNicolaus Copernicus UniversityTorunPoland
  2. 2.Institute of Mathematics of Polish Academy of SciencesWarsawPoland

Personalised recommendations