Advertisement

Journal of Mathematical Fluid Mechanics

, Volume 14, Issue 3, pp 407–419 | Cite as

Steady Water Waves with Multiple Critical Layers: Interior Dynamics

  • Mats EhrnströmEmail author
  • Joachim Escher
  • Gabriele Villari
Article

Abstract

We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat’s-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.

Mathematics Subject Classification (2010)

Primary 76B15 Secondary 35Q35 

Keywords

Steady water waves Small-amplitude waves Critical layers Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amick C.J., Fraenkel L.E., Toland J.F.: On the Stokes conjecture for the wave of extreme form. Acta. Math. 148, 193–214 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Caflisch R., Lamb H.: Hydrodynamics (Cambridge Mathematical Library). Cambridge University Press, London (1993)Google Scholar
  3. 3.
    Choi W.: Strongly nonlinear long gravity waves in uniform shear flows. Phys. Rev. E 68, 026305 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Constantin A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Constantin A., Ehrnström M., Villari G.: Particle trajectories in linear deep-water waves. Nonlinear Anal. Real World Appl. 9, 1336–1344 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Constantin A., Ehrnström M., Wahlén E.: Symmetry for steady gravity water waves with vorticity. Duke Math. J. 140, 591–603 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Constantin A., Escher J.: Symmetry of steady deep-water waves with vorticity. Eur. J. Appl. Math. 15, 755–768 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Constantin A., Escher J.: Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498, 171–181 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Constantin A., Escher J.: Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. (N.S.) 44, 423–431 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173(2), 559–568 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Constantin A., Strauss W.A.: Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57, 481–527 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Constantin A., Strauss W.A.: Rotational steady water waves near stagnation. Philos. Trans. R. Soc. Lond. A365, 2227–2239 (2007)MathSciNetADSGoogle Scholar
  14. 14.
    Constantin A., Strauss W.A.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Constantin A., Varvaruca E.: Steady periodic water waves with constant vorticity: Regularity and local bifurcation. Arch. Ration. Mech. Anal. 199, 33–67 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Constantin A., Villari G.: Particle trajectories in linear water waves. J. Math. Fluid Mech. 10, 1–18 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Craik A.D.D.: Wave Interactions and Fluid Flows. Cambridge University Press, London (1988)zbMATHGoogle Scholar
  18. 18.
    Ehrnström M., Escher J., Wahlén E.: Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43(3), 1436–1456 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ehrnström, M., Holden, H., Raynaud, X.: Symmetric waves are traveling waves. Int. Math. Res. Not. 2009, 4686–4708Google Scholar
  20. 20.
    Ehrnström M., Villari G.: Linear water waves with vorticity: rotational features and particle paths. J. Differ. Equ. 244, 1888–1909 (2008)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ehrnström M., Villari G.: Recent progress on particle trajectories in steady water waves. Discret. Cont. Dyn. Syst. Ser. B 12, 539–559 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Henry D.: The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not. 2006, 1–13 (2006)MathSciNetGoogle Scholar
  23. 23.
    Henry D.: Particle trajectories in linear periodic capillary and capillary-gravity deep-water waves. J. Nonlinear Math. Phys. 14, 1–7 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Henry D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Henry D.: On the deep-water Stokes wave flow. Int. Math. Res. Not. 2008, 1–7 (2008)ADSGoogle Scholar
  26. 26.
    Hur V.M.: Global bifurcation theory of deep-water waves with vorticity. SIAM J. Math. Anal. 37, 1482–1521 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ionescu-Kruse D.: Particle trajectories in linearized irrotational shallow water flows. J. Nonlinear Math. Phys. 15, 13–27 (2008)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Ionescu-Kruse D.: Particle trajectories beneath small amplitude shallow water waves in constant vorticity flows. Nonlinear Anal. 71, 3779–3793 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Johnson R.S.: On the nonlinear critical layer below a nonlinear unsteady surface wave. J. Fluid Mech. 167, 327–351 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1997Google Scholar
  31. 31.
    Lewy H.: A note on harmonic functions and a hydrodynamical application. Proc. Am. Math. Soc. 3, 111–113 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lighthill J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)zbMATHGoogle Scholar
  33. 33.
    Milnor J.: Morse theory. Based on lecture notes by Spivak M., Wells R. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton N.J (1963)Google Scholar
  34. 34.
    Moore D.W., Saffman P.G.: Finite-amplitude waves in inviscid shear flows. Proc. Roy. Soc. Lond. Ser. A 382, 389–410 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    Okamoto H., Shōji M.: The Mathematical Theory of Permanent Progressive Water-Waves vol. 20 of Advanced Series in Nonlinear Dynamics. World Scientific Publishing, River Edge (2001)Google Scholar
  36. 36.
    Plotnikov, P.I.: Proof of the Stokes conjecture in the theory of surface waves. Dinamika Sploshn. Sredy 57, 41—76 (1982) (in Russian); English transl.: Stud. Appl. Math. 108, 217–244 (2002)Google Scholar
  37. 37.
    Saffman P.G.: Dynamics of vorticity. J. Fluid Mech. 106, 49–58 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Saffman P.G.: Vortex Dynamics. Cambridge University Press, London (1995)Google Scholar
  39. 39.
    Stokes G.G.: On the theory of oscillatory waves. Trans. Cambr. Phil. Soc. 8, 441–455 (1847)Google Scholar
  40. 40.
    Thomas, G., Klopman, G.: (1997) Wave-current interactions in the near-shore region. In: J. Hunt (eds.) Gravity Waves in Water of Finite Depth. Advances in Fluid Mechanics, Computational Mechanics Publications, Southhampton, pp 255–319 (1997)Google Scholar
  41. 41.
    Thorpe S.A.: An experimental study of critical layers. J. Fluid Mech. 103, 321–344 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    Toland, J.F.:Stokes waves. Topol. Methods Nonlinear Anal. 7 [8] 1–48 [412–414] (1996 [1997])Google Scholar
  43. 43.
    Toland, J.F.: On the symmetry theory for Stokes waves of finite and infinite depth. in Trends in applications of mathematics to mechanics (Nice, 1998). Chapman & Hall/CRC Monogr. In: Surv. Pure Appl. Math., vol. 106, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 207–217Google Scholar
  44. 44.
    Varvaruca E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246, 4043–4076 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Wahlén E.: Steady periodic capillary-gravity waves with vorticity. SIAM J. Math. Anal. 38, 921–943 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Wahlén E.: Steady water waves with a critical layer. J. Differ. Equ. 246, 2468–2483 (2009)zbMATHCrossRefGoogle Scholar
  47. 47.
    Walsh, S.: Steady periodic gravity waves with surface tension. (2009). arXiv:0911.1375Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Mats Ehrnström
    • 1
    Email author
  • Joachim Escher
    • 1
  • Gabriele Villari
    • 2
  1. 1.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany
  2. 2.Dipartimento di MatematicaFirenzeItaly

Personalised recommendations