Journal of Mathematical Fluid Mechanics

, Volume 13, Issue 2, pp 173–189 | Cite as

Singular Limits of the Equations of Magnetohydrodynamics

  • Peter KukučkaEmail author


This paper studies the asymptotic limit for solutions to the equations of magnetohydrodynamics, specifically, the Navier–Stokes–Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behavior of the magnetic field, when Mach number and Alfvén number tends to zero. The introduced system is considered on a bounded spatial domain in \({\mathbb{R}^{3}}\), supplemented with conservative boundary conditions. Convergence towards the incompressible system of the equations of magnetohydrodynamics is shown.

Mathematics Subject Classification (2000)

35A05 35Q30 35Q60 


Navier–Stokes–Fourier system Oberbeck-Boussinesq approximation Maxwell equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alazard T.: Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180(1), 1–73 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ducomet B., Feireisl E.: The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars. Commun. Math. Phys. 266, 595–629 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Duvaut G., Lions J.L.: Inequalities in Mechanics and Physics. Springer, Heidelberg (1976)zbMATHCrossRefGoogle Scholar
  4. 4.
    Elliott J.R.: Numerical simulations of the solar convection, Stellar Astrophysical Fluid Dynamics, pp. 315–328. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  5. 5.
    Feireisl E., Novotný A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser, Boston (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Feireisl E., Novotný A.: The low Mach number limit for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 186(2007), 77–107 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kleinerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. XXXIV, 481–524 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Lions P.L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Novotný A., Straškraba I.: Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004)Google Scholar
  10. 10.
    Proctor M.R.E.: Magnetoconvection, Fluid Dynamics and Dynamos in Astrophysics and Geophysics, pp. 235–276. CRC Press, Boca Raton (2005)Google Scholar
  11. 11.
    Rubino B.: Singular limits in the data space for the equations of magneto-fluid dynamics. Hokkaido Math. J. 24(1995), 357–386 (1995)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Temam R.: Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2. North-Holland, Amsterdam (1977)Google Scholar
  13. 13.
    Weiss N.: Modelling Solar and Stellar Magnetoconvection, Stellar Astrophysical Fluid Dynamics, pp. 329–343. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  14. 14.
    Zank J.P., Matthaeus W.H.: Nearly incompressible fluids. II: magnetohydrodynamics turbulence, and waves. Phys. Fluids A 5(I), 257 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Mathematical Institute of the ASCRPraha 1Czech Republic

Personalised recommendations