Journal of Mathematical Fluid Mechanics

, Volume 12, Issue 2, pp 202–242 | Cite as

An Eigenvalue Criterion for Stability of a Steady Navier–Stokes Flow in \({\mathbb{R}}^3\)

  • Paul Deuring
  • Jiří Neustupa


We study the resolvent equation associated with a linear operator \({\mathcal{L}}\) arising from the linearized equation for perturbations of a steady Navier–Stokes flow \({\mathbf{U^*}}\). We derive estimates which, together with a stability criterion from [33], show that the stability of \({\mathbf{U^*}}\) (in the L2-norm) depends only on the position of the eigenvalues of \({\mathcal{L}}\), regardless the presence of the essential spectrum.

Mathematics Subject Classification (2000).

Primary 35Q30, 35B35 secondary 76D05, 76E09 


Navier–Stokes equations stability Oseen equation resolvent estimates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • Paul Deuring
    • 1
  • Jiří Neustupa
    • 2
  1. 1.Laboratoire de MathématiquesUniversité du LittoralCalais cédexFrance
  2. 2.Czech Academy of SciencesMathematical InstitutePraha 1Czech Republic

Personalised recommendations