The Spectrum of Volterra Operators on Korenblum Type Spaces of Analytic Functions

  • José BonetEmail author


The continuity, compactness and the spectrum of the Volterra integral operator \(V_g\) with symbol an analytic function g, when acting on the classical Korenblum space and other related weighted Fréchet or (LB) spaces of analytic functions on the open unit disc, are investigated.


Spectrum Integral operator Volterra operator Analytic functions Growth Banach spaces Korenblum space Fréchet spaces (LB)-spaces 

Mathematics Subject Classification

Primary 47G10 Secondary 30D15 30D20 46E15 47B07 47B37 47B38 



The author is thankful to the referee for the careful reading of the manuscript and the helpful remarks.


  1. 1.
    Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in growth Banach spaces of analytic functions. Integral Equ. Oper. Theory 86, 97–112 (2016)CrossRefGoogle Scholar
  2. 2.
    Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic functions. Collect. Math. 69, 263–281 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aleman, A., Constantin, O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aleman, A., Peláez, J.A.: Spectra of integration operators and weighted square functions. Indiana Univ. Math. J. 61, 1–19 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aleman, A., Persson, A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Funct. Anal. 258, 67–98 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aleman, A., Siskakis, A.G.: An integral operator on \(H^p\). Complex Var. Theory Appl. 28, 149–158 (1995)zbMATHGoogle Scholar
  7. 7.
    Aleman, A., Siskakis, A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Basallote, M., Contreras, M.D., Hernández-Mancera, C., Martín, M.J., Paúl, P.J.: Volterra operators and semigroups in weighted Banach spaces of analytic functions. Collect. Math. 65, 233–249 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Austral. Math. Soc. Ser. A 54(1), 70–79 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blasco, O., Girela, D., Márquez, M.A.: Mean growth of the derivative of analytic functions, bounded mean oscillation and normal functions. Indiana Univ. Math. J. 47, 893–912 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bonet, J.: The spectrum of Volterra operators on weighted spaces of entire functions. Q. J. Math. 66, 799–807 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Constantin, O.: A Volterra-type integration operator on Fock spaces. Proc. Am. Math. Soc. 140, 4247–4257 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Constantin, O., Persson, A.-M.: The spectrum of Volterra-type integration operators on generalized Fock spaces. Bull. London Math. Soc. 47, 958–963 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Contreras, M., Hernández-Díaz, A.G.: Weighted composition operators in weighted Banach spacs of analytic functions. J. Austral. Math. Soc. (Ser. A) 69, 41–60 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Duren, P.: Theory of \(H^p\) Spaces. Academic Press, New York (1970)zbMATHGoogle Scholar
  17. 17.
    Girela, D., González, C., Peláez, J.A.: Multiplication and division by inner functions in the space of Bloch functions. Proc. Am. Math. Soc. 134, 1309–1314 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Harutyunyan, A., Lusky, W.: On the boundedness of the differentiation operator between weighted spaces of holomorphic functions. Stud. Math. 184, 233–247 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Grad. Texts in Math. 199, Springer, New York (2000)Google Scholar
  20. 20.
    Hu, Z.: Extended Cesàro operators on mixed-norm spaces. Proc. Am. Math. Soc. 131, 2171–2179 (2003)CrossRefGoogle Scholar
  21. 21.
    Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)CrossRefGoogle Scholar
  22. 22.
    Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomophic functions. Stud. Math. 75, 19–45 (2006)CrossRefGoogle Scholar
  24. 24.
    Malman, B.: Spectra of generalized Cesáro operators acting on growth spaces. Integr. Equ. Oper. Theory 90, 26 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Meise, R., Vogt, D.: Introduction to Functional Analysis, Vol 2 of Oxford Graduate Texts in Mathematics. The Clarendon Press, New York (1997)Google Scholar
  26. 26.
    Persson, A.-M.: On the spectrum of the Cesàro operator on spaces of analytic functions. J. Math. Anal. Appl. 340, 1180–1203 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pommerenke, C.: Schlichte Funktionen un analytische Functionen von beschrn̈kter mittlerer Oszilation. Comment. Math. Helv. 52, 591–602 (1977)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)zbMATHGoogle Scholar
  29. 29.
    Siskakis, A.: Volterra operators on spaces of analytic functions–a survey. In: Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, 2006, pp. 51–68 (2006)Google Scholar
  30. 30.
    Stević, S.: Boundedness and compactness of an integral operator on a weighted space on the polydisc. Indian J. Pure Appl. Math. 37, 343–355 (2006)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Vasilescu, F.H.: Analytic functional calculus and spectral decompositions. Translated from the Romanian. Mathematics and its Applications (East European Series), 1. D. Reidel Publishing Co., Dordrecht (1982)Google Scholar
  32. 32.
    Zhu, K.: Operator Theory on Function Spaces, Math. Surveys and Monographs Vo. 138. Amer. Math. Soc. (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y Aplicada IUMPAUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations