Advertisement

Completeness Property of One-Dimensional Perturbations of Normal and Spectral Operators Generated by First Order Systems

  • Anna V. Agibalova
  • Anton A. LunyovEmail author
  • Mark M. Malamud
  • Leonid L. Oridoroga
Article
  • 101 Downloads

Abstract

The paper is concerned with the completeness property of rank one perturbations of the unperturbed operators generated by special boundary value problems (BVP) for the following \(2 \times 2\) system
$$\begin{aligned}&L y = -i B^{-1} y' + Q(x) y = \lambda y , \quad B = \begin{pmatrix} b_1 &{}\quad 0 \\ 0 &{}\quad b_2 \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \end{aligned}$$
(0.1)
on a finite interval assuming that the potential matrix Q is summable, and \(b_1 b_2^{-1} \notin \mathbb {R}\) (essentially non-Dirac type case). We assume that the unperturbed operator generated by a BVP belongs to one of the following three subclasses of the class of spectral operators: (a) normal operators; (b) operators similar either to a normal or almost normal; (c) operators that meet Riesz basis property with parentheses; We show that in each of the three cases there exists (non-unique) operator generated by a quasi-periodic BVP and its certain rank-one perturbations (in the resolvent sense) generated by special BVPs which are complete while their adjoint are not. In connection with the case (b) we investigate Riesz basis property of quasi-periodic BVP under certain assumptions on the potential matrix Q. We also find a simple formula for the rank of the resolvent difference for operators corresponding to two BVPs for \(n \times n\) system in terms of the coefficients of linear boundary forms.

Keywords

Systems of ordinary differential equations Normal operator Completeness of root vectors Resolvent operator Rank one perturbation Riesz basis property 

Mathematics Subject Classification

Primary 47E05 Secondary 34L10 47B15 

Notes

Acknowledgements

The publication has been prepared with the support of the “RUDN University Program 5-100”. We are highly indebted to the anonymous referee for numerous useful remarks which helped us to improve the exposition.

References

  1. 1.
    Adamyan, V., Langer, H., Tretter, C., Winklmeier, M.: Dirac-Krein systems on star graphs. Integral Equ. Oper. Theory 86(1), 121–150 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Agibalova, A.V., Lunyov, A.A., Malamud, M.M., Oridoroga, L.L.: Completeness property of one-dimensional perturbations of normal and spectral operators generated by first order systems. arXiv:1807.05345
  3. 3.
    Agibalova, A.V., Malamud, M.M., Oridoroga, L.L.: On the completeness of general boundary value problems for \(2 \times 2\) first-order systems of ordinary differential equations. Methods Funct. Anal. Topol. 18(1), 3–18 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Baranov, A.: Spectral theory of rank one perturbations of normal compact operators. Algebra i Analiz 30(5), 1–56 (2018). arXiv:1804.02349 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baranov, A., Yakubovich, D.: One-dimensional perturbations of unbounded selfadjoint operators with empty spectrum. J. Math. Anal. Appl. 424(2), 1404–1424 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Baranov, A., Yakubovich, D.: Completeness and spectral synthesis of nonselfadjoint one-dimensional perturbations of selfadjoint operators. Adv. Math. 302, 740–798 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Baskakov, A.G., Derbushev, A.V., Shcherbakov, A.O.: The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials. Izv. Math. 75(3), 445–469 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Birkhoff, G.D., Langer, R.E.: The boundary problems and developments associated with a system of ordinary differential equations of the first order. Proc. Am. Acad. Arts Sci. 58, 49–128 (1923)CrossRefGoogle Scholar
  9. 9.
    Djakov, P., Mityagin, B.: Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions. Indiana Univ. Math. J. 61(1), 359–398 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Djakov, P., Mityagin, B.: Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions. J. Approx. Theory 164(7), 879–927 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Djakov, P., Mityagin, B.: Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators. J. Funct. Anal. 263(8), 2300–2332 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Djakov, P., Mityagin, B.: Riesz bases consisting of root functions of 1D Dirac operators. Proc. Am. Math. Soc. 141(4), 1361–1375 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Deckard, D., Foias, C., Pearcy, C.: Compact operators with root vectors that span. Proc. Am. Math. Soc. 76(1), 101–106 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dunford, N., Schwartz, J.: Linear operators. Part III. Spectral operators. With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. VII. Interscience Publishers, Wiley, New York (1971)Google Scholar
  15. 15.
    Gesztesy, F., Tkachenko, V.: A criterion for Hill operators to be spectral operators of scalar type. J. Anal. Math. 107, 287–353 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gesztesy, F., Tkachenko, V.: A Schauder and Riesz basis criterion for non-selfadjoint Schrödinger operators with periodic and anti-periodic boundary conditions. J. Differ. Equ. 253(2), 400–437 (2012)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators in hilbert space. In: Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)Google Scholar
  18. 18.
    Gomilko, A., Rzepnicki, L.: On asymptotic behaviour of solutions of the Dirac system and applications to the Sturm-Liouville problem with a singular potential. arXiv:1808.09272
  19. 19.
    Gubreev, G.M.: On the spectral decomposition of finite-dimensional perturbations of dissipative Volterra operators. Tr. Mosc. Mat. Obs. 64, 90–140 (2003) English transl.: Trans. Moscow Math. Soc. 79–126 (2003)Google Scholar
  20. 20.
    Hamburger, H.: Uber die Zerlegung des Hilbertschen Raumes durch vollstetige lineare Transforma-tionen. Math. Nachr. 4, 56–69 (1951)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Keldysh, M.V.: On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators. Uspekhi Mat. Nauk 26(4), 15–41 (1971). English transl.: Russian Math. Surveys 26(4), 15–44 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Leontiev, A.F.: Entire Functions. Series of Exponentials. Nauka, Moscow (1983). (in Russian)Google Scholar
  23. 23.
    Lunyov, A.A., Malamud, M.M.: On the completeness of the root vectors for first order systems. Dokl. Math. 88(3), 678–683 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lunyov, A.A., Malamud, M.M.: On Riesz basis property of root system for \((2 \times 2)\)-Dirac type system. Dokl. Math. 90(2), 556–561 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lunyov, A.A., Malamud, M.M.: On spectral synthesis for dissipative Dirac type operators. Integral Equ. Oper. Theory 80(1), 78–106 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lunyov, A.A., Malamud, M.M.: On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications. J. Spectr. Theory 5(1), 17–70 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lunyov, A.A., Malamud, M.M.: On the Riesz basis property of root vectors system for \(2\times 2\) Dirac type operators. J. Math. Anal. Appl. 441, 57–103 (2016). arXiv:1504.04954
  28. 28.
    Lunyov, A.A., Malamud, M.M.: Normal boundary value problems for first order systems (in preparation)Google Scholar
  29. 29.
    Marchenko, V.A.: Sturm-Liouville Operators and Applications, Operator Theory: Advances and Applications, vol. 22. Birkhäuser Verlag, Basel (1986)CrossRefGoogle Scholar
  30. 30.
    Makin, A.S.: On the completeness of the system of root functions of the Sturm–Liouville operator with degenerate boundary conditions. Differ. Equ. 50(6), 835–839 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Makin, A.S.: On two-point boundary value problems for the Sturm–Liouville operator. arXiv:1512.06584 (submitted on 21 Dec 2015)
  32. 32.
    Makin, A.S.: On Convergence of Spectral Expansions of Dirac Operators with Regular Boundary Conditions. arXiv:1902.02952 (submitted on 21 Feb 2019)
  33. 33.
    Malamud, M.M.: Questions of uniqueness in inverse problems for systems of differential equations on a finite interval. Trans. Mosc. Math. Soc. 60, 173–224 (1999)MathSciNetGoogle Scholar
  34. 34.
    Malamud, M.M.: On the completeness of the system of root vectors of the Sturm-Liouville operator with general boundary conditions. Funct. Anal. Appl. 42(3), 198–204 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Malamud, M.M., Mogilevskii, V.I.: Krein type formula for canonical resolvents of dual pairs of linear relations. Methods Funct. Anal. Topol. 8(4), 72–100 (2002)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Malamud, M.M., Oridoroga, L.L.: On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations. J. Funct. Anal. 263, 1939–1980 (2012).  https://doi.org/10.1016/j.jfa.2012.06.016 MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Markus, A.S.: An Introduction to the Spectral Theory of Polynomial Operator Pencils. Shtiintsa, Chisinau (1986). (in Russian)Google Scholar
  38. 38.
    Savchuk, A.M., Sadovnichaya, I.V.: The Riesz basis property with brackets for Dirac systems with summable potentials. CMFD 58, 128–152 (2015)Google Scholar
  39. 39.
    Savchuk, A.M., Sadovnichaya, I.V.: The Riesz basis property with brackets for Dirac systems with summable potentials. J. Math. Sci. 233(4), 514–540 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Savchuk, A.M., Shkalikov, A.A.: The dirac operator with complex-valued summable potential. Math. Notes 96(5), 3–36 (2014)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Shkalikov, A.A.: Perturbations of self-adjoint and normal operators with discrete spectrum. Russ. Math. Surv. 71(5), 907–964 (2016)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anna V. Agibalova
    • 1
  • Anton A. Lunyov
    • 2
    Email author
  • Mark M. Malamud
    • 3
  • Leonid L. Oridoroga
    • 1
  1. 1.Donetsk National UniversityDonetskUkraine
  2. 2.Facebook, Inc.Menlo ParkUSA
  3. 3.Peoples’ Friendship University of Russia (RUDN University)MoscowRussian Federation

Personalised recommendations