# Continuity of the $$\varvec{(n,\epsilon )}$$-Pseudospectrum in Banach Algebras

• Kousik Dhara
• S. H. Kulkarni
• Markus Seidel
Article

## Abstract

Let $$\epsilon >0$$, n a non-negative integer, and A a complex unital Banach algebra. Define $$\gamma _n: A\times {\mathbb {C}}\rightarrow [0,\infty ]$$ by
\begin{aligned} \gamma _n(a,z)={\left\{ \begin{array}{ll} \Vert (z -a)^{-2^n}\Vert ^{-1/2^n}, &{}\quad \text {if } (z-a) \text{ is } \text{ invertible }\\ 0, &{}\quad \text {if } (z-a) \text { is not invertible}. \end{array}\right. } \end{aligned}
The $$(n,\epsilon )$$-pseudospectrum $$\Lambda _{n,\epsilon }(a)$$ of an element $$a\in A$$ is defined by $$\Lambda _{n,\epsilon }(a):= \{\lambda \in {\mathbb {C}}:\gamma _n(a,\lambda )\le \epsilon \}$$. We show that $$\gamma _0$$ is Lipschitz on $$A\times {\mathbb {C}}$$, $$\gamma _n$$ is uniformly continuous on bounded subsets of $$A\times {\mathbb {C}}$$ for $$n\ge 1$$, and $$\gamma _n$$ is Lipschitz on some particular domains for $$n\ge 1$$. Using these properties, we establish that the map $$(\epsilon ,a)\mapsto \Lambda _{n,\epsilon }(a)$$ is continuous at $$(\epsilon _0,a_0)$$ if and only if the level set $$\{\lambda \in {\mathbb {C}}: \gamma _n(a_0,\lambda )= \epsilon _0 \}$$ does not contain any non-empty open set. In particular, this happens when a is a compact operator on a Banach space or a bounded operator on a Hilbert space or on an $$L^p$$ space with $$1\le p\le \infty$$. We also give examples of operators where this condition is not satisfied, and consequently, the map is not continuous.

## Keywords

Banach algebra Spectrum Pseudospectrum $$(n, \epsilon )$$-Pseudospectrum

47A10 47A58

## Notes

### Acknowledgements

The authors would like to thank the anonymous referee for his/her valuable comments that led to a considerable improvement in this paper. The first author would like to thank the Department of Atomic Energy (DAE), India (Ref No: 2/39(2)/2015/NBHM/R&D-II/7440) for financial support.

## References

1. 1.
Bögli, S., Siegl, P.: Remarks on the convergence of pseudospectra. Integral Equ. Oper. Theory 80, 303–321 (2014)
2. 2.
Böttcher, A.: Pseudospectra and singular values of large convolution operators. J. Integral Equ. Appl. 6, 267–301 (1994)
3. 3.
Böttcher, A., Grudsky, S.M., Silbermann, B.: Norms of inverses, spectra, and pseudospectra of large truncated Wiener–Hopf operators and Toeplitz matrices. N. Y. J. Math. 3, 1–31 (1997)
4. 4.
Böttcher, A., Grudsky, S.M.: Can spectral value sets of Toeplitz band matrices jump? Linear Algebra Appl. 351(352), 99–116 (2002)
5. 5.
Davies, E.B.: Pseudospectra of differential operators. J. Oper. Theory 43, 243–262 (2000)
6. 6.
Davies, E.B.: A defence of mathematical pluralism. Philos. Math. 13(3), 252–276 (2005)
7. 7.
Dhara, K., Kulkarni, S.H.: The $$(n,\epsilon )$$-pseudospectrum of an element of a Banach algebra. J. Math. Anal. Appl. 464, 939–954 (2018)
8. 8.
Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. Interscience Publishers Ltd., London (1958)
9. 9.
Gallestey, E., Hinrichsen, D., Pritchard, A.J.: Spectral value sets of closed linear operators. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456, 1397–1418 (2000)
10. 10.
Globevnik, J.: On complex strict and uniform convexity. Proc. Am. Math. Soc. 47, 175–178 (1975)
11. 11.
Globevnik, J.: Norm-constant analytic functions and equivalent norms. Ill. J. Math. 20, 503–506 (1976)
12. 12.
Hansen, A.C.: On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal. 254, 2092–2126 (2008)
13. 13.
Hansen, A.C.: Infinite-dimensional numerical linear algebra: theory and applications. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 3539–3559 (2010)
14. 14.
Hansen, A.C.: On the solvability complexity index, the $$n$$-pseudospectrum and approximations of spectra of operators. J. Am. Math. Soc. 24, 81–124 (2011)
15. 15.
Hansen, A.C., Nevanlinna, O.: Complexity issues in computing spectra, pseudospectra and resolvents. Banach Cent. Publ. 112, 171–194 (2017)
16. 16.
Harrabi, A.: Pseudospectre d’une suite d’opérateurs bornés. RAIRO Modél. Math. Anal. Numér. 32, 671–680 (1998)
17. 17.
Krishnan, A., Kulkarni, S.H.: Pseudospectrum of an element of a Banach algebra. Oper. Matrices 11, 263–287 (2017)
18. 18.
Reddy, S.C.: Pseudospectra of Wiener–Hopf integral operators and constant-coefficient differential operators. J. Integral Equ. Appl. 5, 369–403 (1993)
19. 19.
Seidel, M.: On $$(N,\epsilon )$$-pseudospectra of operators on Banach spaces. J. Funct. Anal. 262, 4916–4927 (2012)
20. 20.
Shargorodsky, E.: On the level sets of the resolvent norm of a linear operator. Bull. Lond. Math. Soc. 40, 493–504 (2008)
21. 21.
Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39, 383–406 (1997)
22. 22.
Trefethen, L.N., Embree, M.: Pseudospectra gateway. Web site: http://www.comlab.ox.ac.uk/pseudospectra
23. 23.
Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

© Springer Nature Switzerland AG 2019

## Authors and Affiliations

• Kousik Dhara
• 1
• S. H. Kulkarni
• 1
• Markus Seidel
• 2
1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia
2. 2.University of Applied Sciences ZwickauZwickauGermany