Continuity of the \(\varvec{(n,\epsilon )}\)-Pseudospectrum in Banach Algebras

  • Kousik DharaEmail author
  • S. H. Kulkarni
  • Markus Seidel


Let \(\epsilon >0\), n a non-negative integer, and A a complex unital Banach algebra. Define \(\gamma _n: A\times {\mathbb {C}}\rightarrow [0,\infty ]\) by
$$\begin{aligned} \gamma _n(a,z)={\left\{ \begin{array}{ll} \Vert (z -a)^{-2^n}\Vert ^{-1/2^n}, &{}\quad \text {if } (z-a) \text{ is } \text{ invertible }\\ 0, &{}\quad \text {if } (z-a) \text { is not invertible}. \end{array}\right. } \end{aligned}$$
The \((n,\epsilon )\)-pseudospectrum \(\Lambda _{n,\epsilon }(a)\) of an element \(a\in A\) is defined by \(\Lambda _{n,\epsilon }(a):= \{\lambda \in {\mathbb {C}}:\gamma _n(a,\lambda )\le \epsilon \}\). We show that \(\gamma _0\) is Lipschitz on \(A\times {\mathbb {C}}\), \(\gamma _n\) is uniformly continuous on bounded subsets of \(A\times {\mathbb {C}}\) for \(n\ge 1\), and \(\gamma _n\) is Lipschitz on some particular domains for \(n\ge 1\). Using these properties, we establish that the map \((\epsilon ,a)\mapsto \Lambda _{n,\epsilon }(a)\) is continuous at \((\epsilon _0,a_0)\) if and only if the level set \(\{\lambda \in {\mathbb {C}}: \gamma _n(a_0,\lambda )= \epsilon _0 \}\) does not contain any non-empty open set. In particular, this happens when a is a compact operator on a Banach space or a bounded operator on a Hilbert space or on an \(L^p \) space with \(1\le p\le \infty \). We also give examples of operators where this condition is not satisfied, and consequently, the map is not continuous.


Banach algebra Spectrum Pseudospectrum \((n, \epsilon )\)-Pseudospectrum 

Mathematics Subject Classification

47A10 47A58 



The authors would like to thank the anonymous referee for his/her valuable comments that led to a considerable improvement in this paper. The first author would like to thank the Department of Atomic Energy (DAE), India (Ref No: 2/39(2)/2015/NBHM/R&D-II/7440) for financial support.


  1. 1.
    Bögli, S., Siegl, P.: Remarks on the convergence of pseudospectra. Integral Equ. Oper. Theory 80, 303–321 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Böttcher, A.: Pseudospectra and singular values of large convolution operators. J. Integral Equ. Appl. 6, 267–301 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Böttcher, A., Grudsky, S.M., Silbermann, B.: Norms of inverses, spectra, and pseudospectra of large truncated Wiener–Hopf operators and Toeplitz matrices. N. Y. J. Math. 3, 1–31 (1997)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Böttcher, A., Grudsky, S.M.: Can spectral value sets of Toeplitz band matrices jump? Linear Algebra Appl. 351(352), 99–116 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davies, E.B.: Pseudospectra of differential operators. J. Oper. Theory 43, 243–262 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Davies, E.B.: A defence of mathematical pluralism. Philos. Math. 13(3), 252–276 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dhara, K., Kulkarni, S.H.: The \((n,\epsilon )\)-pseudospectrum of an element of a Banach algebra. J. Math. Anal. Appl. 464, 939–954 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. Interscience Publishers Ltd., London (1958)zbMATHGoogle Scholar
  9. 9.
    Gallestey, E., Hinrichsen, D., Pritchard, A.J.: Spectral value sets of closed linear operators. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456, 1397–1418 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Globevnik, J.: On complex strict and uniform convexity. Proc. Am. Math. Soc. 47, 175–178 (1975)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Globevnik, J.: Norm-constant analytic functions and equivalent norms. Ill. J. Math. 20, 503–506 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hansen, A.C.: On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal. 254, 2092–2126 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hansen, A.C.: Infinite-dimensional numerical linear algebra: theory and applications. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 3539–3559 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hansen, A.C.: On the solvability complexity index, the \(n\)-pseudospectrum and approximations of spectra of operators. J. Am. Math. Soc. 24, 81–124 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hansen, A.C., Nevanlinna, O.: Complexity issues in computing spectra, pseudospectra and resolvents. Banach Cent. Publ. 112, 171–194 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Harrabi, A.: Pseudospectre d’une suite d’opérateurs bornés. RAIRO Modél. Math. Anal. Numér. 32, 671–680 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Krishnan, A., Kulkarni, S.H.: Pseudospectrum of an element of a Banach algebra. Oper. Matrices 11, 263–287 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Reddy, S.C.: Pseudospectra of Wiener–Hopf integral operators and constant-coefficient differential operators. J. Integral Equ. Appl. 5, 369–403 (1993)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Seidel, M.: On \((N,\epsilon )\)-pseudospectra of operators on Banach spaces. J. Funct. Anal. 262, 4916–4927 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shargorodsky, E.: On the level sets of the resolvent norm of a linear operator. Bull. Lond. Math. Soc. 40, 493–504 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39, 383–406 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Trefethen, L.N., Embree, M.: Pseudospectra gateway. Web site:
  23. 23.
    Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.University of Applied Sciences ZwickauZwickauGermany

Personalised recommendations