Weak Factorization and Hankel Forms for Bergman–Orlicz Spaces on the Unit Ball

  • Edgar TchoundjaEmail author
  • Ruhan Zhao


Let \({\mathbb {B}}^n\) be the unit ball of \({\mathbb {C}}^n\) and \({\mathcal {A}}^\Phi _\alpha ({\mathbb {B}}^n)\) be the Bergman–Orlicz space, consisting of holomorphic functions in \(L^\Phi _\alpha ({\mathbb {B}}^n)\). We characterize bounded Hankel operators between some Bergman–Orlicz spaces \({\mathcal {A}}^{\Phi _1}_\alpha ({\mathbb {B}}^n)\) and \(\mathcal A^{\Phi _2}_\alpha ({\mathbb {B}}^n)\) where \(\Phi _1\) and \(\Phi _2\) are convex growth functions. We then obtain weak factorization theorems for \({\mathcal {A}}^\Phi _\alpha ({\mathbb {B}}^n)\), with \(\Phi \) a convex growth function, into two Bergman–Orlicz spaces, generalizing the main result obtained in Pau and Zhao (Math Ann 363:363–383, 2015).


Hankel operator Bergman–Orlicz spaces Weak factorization 

Mathematics Subject Classification

47B35 32A35 32A36 



The authors would like to thank the anonymous referee for his helpful comments.


  1. 1.
    Bekolle, D., Bonami, A., Tchoundja, E.: Atomic decomposition and weak factorization for Bergman–Orlicz spaces.
  2. 2.
    Bonami, A., Luo, L.: On Hankel operators between Bergman spaces on the unit ball. Houst. J. Math. 31(3), 815–828 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bonami, A., Sehba, B.F.: Hankel operators between Hardy–Orlicz spaces and products of holomorphic functions. Rev. Math. Argent. 50(2), 187–199 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Coifman, R., Rochberg, R.: Representation theorems for holomorphic and harmonic functions in \(L^p\). Asterisque 77, 11–66 (1980)zbMATHGoogle Scholar
  5. 5.
    Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Mich. Math. J. 40, 333–358 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pau, J., Zhao, R.: Weak factorization and Hankel forms for weighted Bergman spaces on the unit ball. Math. Ann. 363, 363–383 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc, New York (1991)Google Scholar
  8. 8.
    Sehba, B.F., Stevic, S.: On some product-type operators from Hardy–Orlicz and Bergman–Orlicz spaces to weighted-type spaces. Appl. Math. Comput. 233, 565–581 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Sehba, B., Tchoundja, E.: Hankel operators on holomorphic Hardy–Orlicz spaces. Integral Equ. Oper. Theory 73(3), 331–349 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sehba, B., Tchoundja, E.: Duality for large Bergman–Orlicz spaces and Hankel operators between Bergman–Orlicz spaces on the unit ball. Complex Var. Elliptic Equ. 62(11), 1619–1644 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Volberg, A.L., Tolokonnikov, V.A.: Hankel operators and problems of best approximation of unbounded functions. Translated from Zapiski Nauchnykh Seminarov Leningradskogo Matematicheskogo Instituta im. V.A. Steklova AN SSSR, 141, 5–17 (1985)Google Scholar
  12. 12.
    Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, vol. 226. Springer, Berlin (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  2. 2.Department of MathematicsSUNY BrockportBrockportUSA
  3. 3.Department of MathematicsShantou UniversityShantouChina

Personalised recommendations