A New View at Dixmier Traces on \(\mathfrak {L}_{1,\infty } (H)\)

  • Albrecht PietschEmail author


Dixmier traces are usually defined by means of functionals on \(\mathfrak {l}_\infty (\mathbb {N})\) that are invariant under the forward dilation
$$\begin{aligned} D_+: (\sigma _1,\sigma _2,\sigma _3,\sigma _4,\dots \;) \mapsto (\sigma _1,\sigma _1,\sigma _2,\sigma _2,\dots \;) \end{aligned}$$
and \(\mathfrak {c}_0\)-singular, which means that they vanish at all null sequences.
The backward dilation
$$\begin{aligned} D_-: (\sigma _1,\sigma _2,\sigma _3,\sigma _4,\dots \;) \mapsto (\sigma _2,\sigma _4,\sigma _6,\sigma _8,\dots \;) \end{aligned}$$
can be used, as well. Note that \(D_-\)-invariant functionals automatically vanish on \(\mathfrak {c}_0(\mathbb {N})\).

As observed by Sukochev and coauthors, any requirement concerning dilation invariance can be dropped when working on \(\mathfrak {L}_{1,\infty } (H)\). It just suffices to assume that the generating functionals vanish on \(\mathfrak {c}_0(\mathbb {N})\). So it seems to be a good idea to present the theory of Dixmier traces on the bases of an adapted definition. We carry out this project. Although the fundamental results remain unchanged, their interplay becomes a quite different appearance.

Even more is possible. Looking at the conclusions

Hahn–Banach Theorem   Open image in new window   \(\mathfrak {c}_0\)-singular functional   Open image in new window   Dixmier trace, we may wonder whether the intermediate step is necessary. Indeed, there exists a sublinear function on the underlying operator ideal \(\mathfrak {L}_{1,\infty } (H)\) that directly yields all proper Dixmier traces via the Hahn–Banach Theorem. So the theory of Dixmier traces can be turned upside down:

Open image in new window


Operator ideal Dixmier trace Extended limit Banach limit Dilation limit Shift-invariance Dilation-invariance 

Mathematics Subject Classification

Primary 47B10 47B37 Secondary 46B45 46A45 



  1. 1.
    Banach, S.: Théorie des opérations linéaires, Warszawa (1932)Google Scholar
  2. 2.
    Böttcher, A., Pietsch, A.: Orthogonal and skew-symmetric operators in real Hilbert space. Integr. Equ. Oper. Theory 74, 497–511 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Connes, A.: Noncommutative Geometry. Academic Press, New York (1994)zbMATHGoogle Scholar
  4. 4.
    Dixmier, J.: Existence de traces non normales. C. R. Acad. Sci. Paris Sér. A 262, 1107–1108 (1966)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Edwards, R.E.: Functional Analysis. Holt, Rinehart, Winston, New York (1965)zbMATHGoogle Scholar
  6. 6.
    Gohberg, I.C., Kreĭn, M.G.: Introduction to the Theory of Nonselfadjoint Operators in Hilbert Space. American Mathematical Society, Providence, 1969; Russian original: Nauk, Moscow (1965)Google Scholar
  7. 7.
    Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001)CrossRefGoogle Scholar
  8. 8.
    Guichardet, A.: La trace de Dixmier et autres traces. L’Enseignement Math. (2) 61, 461–481 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kalton, N.J., Sedaev, A.A., Sukochev, F.A.: Fully symmetric functionals on a Marcinkiewicz space are Dixmier tracers. Adv. Math. 226, 3540–3549 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kalton, N., Sukochev, F.A.: Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals. Can. Math. Bull. 51, 67–80 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lord, S., Sedaev, A.A., Sukochev, F.A.: Dixmier traces as singular symmetric functionals and applications to measurable operators. J. Funct. Anal. 224, 72–106 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lord, S., Sukochev, F., Zanin, D.: Singular Traces. De Gruyter, Berlin (2013)zbMATHGoogle Scholar
  13. 13.
    Lorentz, G.G.: A contribution to the theory of divergent sequences. Acta Math. 80, 167–190 (1948)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mazur, S.: On the generalized limit of bounded sequences. Colloq. Math. 2, 173–175 (1951)MathSciNetCrossRefGoogle Scholar
  15. 15.
    von Neumann, J.: Invariant Measures. Lecture Notes, Princeton University 1940/41, American Mathematical Society, Providence (1999)Google Scholar
  16. 16.
    Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  17. 17.
    Pietsch, A.: Traces and shift invariant functionals. Math. Nachr. 145, 7–43 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pietsch, A.: Dixmier traces of operators on Banach and Hilbert spaces. Math. Nachr. 285, 1999–2028 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pietsch, A.: Shift-invariant functionals on Banach sequence spaces. Stud. Math. 214, 37–66 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pietsch, A.: Traces on operator ideals and related linear forms on sequence ideals (part III). J. Math. Anal. Appl. 421, 971–981 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pietsch, A.: A new approach to operator ideals on Hilbert space and their traces. Integr. Equ. Oper. Theory 89, 595–606 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pietsch, A.: Traces and symmetric linear forms. Arch. Math. (Basel) 112, 83–92 (2019)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pietsch, A.: Traces of Hilbert space operators and their recent history. Quaest. Math.
  24. 24.
    Raimi, R.A.: Factorization of summability-preserving generalized limits. J. Lond. Math. Soc. (2) 22, 398–402 (1980)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sedaev, A.A., Sukochev, F.A.: Dixmier measurability in Marcinkiewicz spaces and applications. J. Funct. Anal. 265, 3053–3066 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Semenov, E., Sukochev, F., Usachev, A.: Banach limits and traces on \(\cal{L}_{1,\infty }\). Adv. Math. 285, 568–628 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sucheston, L.: Banach limits. Am. Math. Mon. 74, 308–311 (1967)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.JenaGermany

Personalised recommendations