Schauder Estimates for Equations Associated with Lévy Generators

  • Franziska KühnEmail author


We study the regularity of solutions to the integro-differential equation \(Af-\lambda f=g\) associated with the infinitesimal generator A of a Lévy process. We show that gradient estimates for the transition density can be used to derive Schauder estimates for f. Our main result allows us to establish Schauder estimates for a wide class of Lévy generators, including generators of stable Lévy processes and subordinated Brownian motions. Moreover, we obtain new insights on the (domain of the) infinitesimal generator of a Lévy process whose characteristic exponent \(\psi \) satisfies \(\text {Re} \, \psi (\xi ) \asymp |\xi |^{\alpha }\) for large \(|\xi |\). We discuss the optimality of our results by studying in detail the domain of the infinitesimal generator of the Cauchy process.


Lévy process Integro-differential equation Schauder estimate Hölder space Gradient estimate 

Mathematics Subject Classification

Primary 60G51 Secondary 45K05 60J35 



I am grateful to Niels Jacob and René Schilling for valuable comments which helped to improve the presentation of this paper; I owe the proof of Remark 3.2(ii) to René Schilling. Moreover, I thank the Institut national des sciences appliquées de Toulouse, Génie mathématique et modélisation for its hospitality during my stay in Toulouse, where a part of this work was accomplished.


  1. 1.
    Bae, J., Kassmann, M.: Schauder estimates in generalized Hölder spaces. arXiv:1505.05498
  2. 2.
    Barles, G., Chasseigne, E., Imbert, C.: Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. 13, 1–26 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bass, R.F.: Regularity results for stable-like operators. J. Funct. Anal. 259, 2693–2722 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin (1975)CrossRefGoogle Scholar
  5. 5.
    Blumenthal, R.M., Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493–516 (1961)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondrac̆ek, Z.: Potential Analysis of Stable Processes and its Extensions. Springer, Berlin (2009)CrossRefGoogle Scholar
  7. 7.
    Böttcher, B., Schilling, R.L., Wang, J.: Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Springer Lecture Notes in Mathematics, vol. 2099. Springer, Berlin (2014). (vol. III of the “Lévy Matters” subseries)Google Scholar
  8. 8.
    Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space. De Gruyter, Berlin (1991)CrossRefGoogle Scholar
  9. 9.
    Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62, 597–638 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dellacherie, C., Meyer, P.-A.: Théorie du potentiel associée à une résolvante - théorie des processus de Markov. Hermann, Paris (1987)zbMATHGoogle Scholar
  11. 11.
    Dong, H., Kim, D.: Schauder estimates for a class of non-local elliptic equations. Discrete Contin. Dyn. Syst. 33, 2319–2347 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)CrossRefGoogle Scholar
  13. 13.
    Grzywny, T.: On Harnack inequality and Hölder regularity for isotropic unimodal Lévy processes. Potential Anal. 41, 1–29 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grzywny, T., Szczypkowski, K.: Estimates of heat kernels of non-symmetric Lévy processes. arXiv:1710.07793
  15. 15.
    Günter, N.M.: La Théorie du Potentiel et ses Applications aux Problèmes Fondamentaux de la Physique Mathématique. Gauthier-Villars, Paris (1934)Google Scholar
  16. 16.
    Hansen, W.: Intrinsic Hölder continuity of harmonic functions. Potential Anal. 47, 1–12 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jacob, N.: Pseudo Differential Operators and Markov Processes II. Imperial College Press/World Scientific, London (2002)CrossRefGoogle Scholar
  18. 18.
    Kaleta, K., Sztonyk, P.: Estimates of transition densities and their derivatives for jump Lévy processes. J. Math. Anal. Appl. 431, 260–282 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Knopova, V., Schilling, R.L.: A note on the existence of transition probability densities of Lévy processes. Forum Math. 25, 125–149 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kühn, F.: Existence and estimates of moments for Lévy-type processes. Stoch. Process. Appl. 127, 1018–1041 (2017)CrossRefGoogle Scholar
  21. 21.
    Kühn, F.: Lévy-Type Processes: Moments, Construction and Heat Kernel Estimates. Springer Lecture Notes in Mathematics, vol. 2187. Springer, Berlin (2017). (vol. VI of the “Lévy Matters” subseries)Google Scholar
  22. 22.
    Kühn, F.: Schauder estimates for Poisson equations associated with non-local Feller generators. arXiv:1902.01760
  23. 23.
    Kühn, F., Schilling, R.L.: A probabilistic proof of Schoenberg’s theorem. J. Math. Anal. Appl. (to appear)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kühn, F., Schilling, R.L.: Strong convergence of the Euler–Maruyama approximation for a class of Lévy-driven SDEs. Stoch. Process. Appl. (to appear)
  25. 25.
    Kühn, F., Schilling, R.L.: On the domain of fractional Laplacians and related generators of Feller processes. J. Funct. Anal. 276, 2397–2439 (2019)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kulczycki, T., Ryznar, M.: Gradient estimates of harmonic functions and transition densities for Lévy processes. Trans. Am. Math. Soc. 368, 281–318 (2015)CrossRefGoogle Scholar
  27. 27.
    Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Anal. Appl. 20, 7–51 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lunardi, A.: Interpolation Theory. Scuola Normale Superiore, Pisa (2009)zbMATHGoogle Scholar
  29. 29.
    Ros-Oton, X., Serra, J.: Regularity theory for general stable operators. J. Differ. Equ. 260, 8675–8715 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  31. 31.
    Schilling, R.L.: Growth and Hölder conditions for the sample paths of Feller processes. Probab. Theory Relat. Fields 112, 565–611 (1998)CrossRefGoogle Scholar
  32. 32.
    Schilling, R.L.: Measures, Integrals and Martingales, 2nd edn. Cambridge University Press, Cambridge (2017)zbMATHGoogle Scholar
  33. 33.
    Schilling, R.L., Partzsch, L.: Brownian Motion. An Introduction to Stochastic Processes, 2nd edn. De Gruyter, Berlin (2014)zbMATHGoogle Scholar
  34. 34.
    Schilling, R.L., Song, R., Vondrac̆ek, Z.: Bernstein Functions: Theory and Applications, 2nd edn. De Gruyter, Berlin (2012)CrossRefGoogle Scholar
  35. 35.
    Schilling, R.L., Sztonyk, P., Wang, J.: Coupling property and gradient estimates of Lévy processes via the symbol. Bernoulli 18, 1128–1149 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  37. 37.
    Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)Google Scholar
  38. 38.
    Sztonyk, P.: Regularity of harmonic functions for anisotropic fractional Laplacians. Math. Nachr. 283, 289–311 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Pub. Co., Amsterdam (1978)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de ToulouseUniversité Paul Sabatier III ToulouseToulouseFrance

Personalised recommendations