Compactness of Hankel Operators with Symbols Continuous on the Closure of Pseudoconvex Domains

  • Timothy G. Clos
  • Mehmet Çelik
  • Sönmez ŞahutoğluEmail author


Let \(\Omega \) be a bounded pseudoconvex domain in \({\mathbb {C}}^2\) with Lipschitz boundary or a bounded convex domain in \({\mathbb {C}}^n\) and \(\phi \in C(\overline{\Omega })\) such that the Hankel operator \(H_{\phi }\) is compact on the Bergman space \(A^2(\Omega )\). Then \(\phi \circ f\) is holomorphic for any holomorphic \(f:{\mathbb {D}}\rightarrow b\Omega \).


Hankel operators Convex domains Pseudoconvex domains 

Mathematics Subject Classification

Primary 47B35 Secondary 32W05 



We would like to thank Emil Straube for reading an earlier manuscript of this paper and for providing us with valuable comments. We also thank the referee for feedback that has improved the exposition of the paper.


  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Amsterdam (2003)Google Scholar
  2. 2.
    Axler, S.: The Bergman space, the Bloch space, and commutators of multiplication operators. Duke Math. J. 53(2), 315–332 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bell, S.R.: Proper holomorphic mappings and the Bergman projection. Duke Math. J. 48(1), 167–175 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clos, T.G.: Compactness of Hankel operators with conjugate holomorphic symbols on complete Reinhardt domains in \({\mathbb{C}}^2\). N. Y. J. Math. 23, 1265–1272 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Clos, T.G.: Compactness of Hankel Operators with Continuous Symbols on Domains in \({\mathbb{C}}^2\). Ph.D. Thesis, University of Toledo (2017)Google Scholar
  6. 6.
    Čučković, Ž., Şahutoğlu, S.: Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains. J. Funct. Anal. 256(11), 3730–3742 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Čučković, Ž., Şahutoğlu, S.: Compactness of products of Hankel operators on convex Reinhardt domains in \({\mathbb{C}}^2\). N. Y. J. Math. 20, 627–643 (2014)zbMATHGoogle Scholar
  8. 8.
    Clos, T.G., Şahutoğlu, S.: Compactness of Hankel operators with continuous symbols. Complex Anal. Oper. Theory 12(2), 365–376 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    D’Angelo, J.P.: Inequalities from Complex Analysis, Carus Mathematical Monographs, vol. 28. Mathematical Association of America, Washington, DC (2002)CrossRefGoogle Scholar
  10. 10.
    Gerald, B.: Folland, Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)Google Scholar
  11. 11.
    Siqi, F., Straube, E.J.: Compactness of the \(\overline{\partial }\)-Neumann problem on convex domains. J. Funct. Anal. 159(2), 629–641 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Siqi, F., Straube, E.J.: Compactness in the \(\overline{\partial }\)-Neumann Problem, Complex Analysis and Geometry (Columbus, OH, 1999), Ohio State University Mathematics Research Institute Publication, vol. 9, pp. 141–160. De Gruyter, Berlin (2001)Google Scholar
  13. 13.
    Haslinger, F.: The \(\overline{\partial }\)-Neumann Problem and Schrödinger Operators, De Gruyter Expositions in Mathematics, vol. 59. De Gruyter, Berlin (2014)Google Scholar
  14. 14.
    Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis, Extended Ed., De Gruyter Expositions in Mathematics, vol. 9. Walter de Gruyter GmbH & Co. KG, Berlin (2013)CrossRefGoogle Scholar
  15. 15.
    Krantz, S.G.: Function Theory of Several Complex Variables. AMS Chelsea Publishing, Providence (2001). (Reprint of the 1992 edition)CrossRefGoogle Scholar
  16. 16.
    Le, T.: Compact Hankel operators on generalized Bergman spaces of the polydisc. Integral Equ. Oper. Theory 67(3), 425–438 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, H.: Hankel operators on the Bergman spaces of strongly pseudoconvex domains. Integral Equ. Oper. Theory 19(4), 458–476 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Matheos, P.: A Hartogs domain with no analytic discs in the boundary for which the \(\overline{\partial }\)-Neumann problem is not compact. Ph.D. Thesis, University of California Los Angeles, CA (1997)Google Scholar
  19. 19.
    Narasimhan, R.: Several Complex Variables, Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1971)Google Scholar
  20. 20.
    Peloso, M.M.: Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains. Ill. J. Math. 38(2), 223–249 (1994)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics, vol. 108. Springer, New York (1986)CrossRefGoogle Scholar
  22. 22.
    Şahutoğlu, S.: Localization of compactness of Hankel operators on pseudoconvex domains. Ill. J. Math. 56(3), 795–804 (2012)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Straube, E.J.: Lectures on the \({ L}^2\)-Sobolev Theory of the \(\overline{\partial }\)-Neumann Problem, ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2010)Google Scholar
  24. 24.
    Şahutoğlu, S., Zeytuncu, Y.E.: On compactness of Hankel and the \(\overline{\partial }\)-Neumann operators on Hartogs domains in \({\mathbb{C}}^2\). J. Geom. Anal. 27(2), 1274–1285 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Classroom Notes: Convex Function is Locally Lipschitz. Amer. Math. Mon. 79(10), 1121–1124 (1972)CrossRefGoogle Scholar
  26. 26.
    Zhu, K.: Operator Theory in Function Spaces, Mathematical Surveys and Monographs, vol. 138, 2nd edn. American Mathematical Society, Providence (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsBowling Green State UniversityBowling GreenUSA
  2. 2.Department of Mathematics and StatisticsUniversity of ToledoToledoUSA
  3. 3.Department of MathematicsTexas A&M University - CommerceCommerceUSA

Personalised recommendations