Advertisement

Integral Equations and Operator Theory

, Volume 89, Issue 4, pp 631–646 | Cite as

Spectral Gaps in Graphene Antidot Lattices

  • Jean-Marie Barbaroux
  • Horia Cornean
  • Edgardo StockmeyerEmail author
Article

Abstract

We consider the gap creation problem in an antidot graphene lattice, i.e. a sheet of graphene with periodically distributed obstacles. We prove several spectral results concerning the size of the gap and its dependence on different natural parameters related to the antidot lattice.

Mathematics Subject Classification

Primary 81Q10 Secondary 46N50 81Q37 34L10 47A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benguria, R.D., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Self-adjointness of two-dimensional Dirac operators on domains. Ann. Henri Poincaré 18(4), 1371–1383 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berry, M.V., Mondragon, R.J.: Neutrino billiards: time-reversal symmetry-breaking without magnetic fields. Proc. R. Soc. Lond. Ser. A 412(1842), 53–74 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brun, S.J., Pereira, V.M., Pedersen, T.G.: Boron and nitrogen doping in graphene antidot lattices. Phys. Rev. B 93(24), 245420 (2016)CrossRefGoogle Scholar
  4. 4.
    Brun, S.J., Thomsen, M.R., Pedersen, T.G.: Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models. J. Phys. Condens. Matter 26(26), 265301 (2014)CrossRefGoogle Scholar
  5. 5.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  6. 6.
    Dvorak, M., Oswald, W., Wu, Z.: Bandgap opening by patterning graphene. Sci. Rep. 3, 2289 (2013)CrossRefGoogle Scholar
  7. 7.
    Fürst, J.A., Pedersen, J.G., Flindt, C., Mortensen, N.A., Brandbyge, M., Pedersen, T.G., Jauho, A.-P.: Electronic properties of graphene antidot lattices. New J. Phys. 11(9), 095020 (2009)CrossRefGoogle Scholar
  8. 8.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, London (2007)zbMATHGoogle Scholar
  9. 9.
    Hunt, B., Sanchez-Yamagishi, J.D., Young, A.F., Yankowitz, M., LeRoy, B.J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P., et al.: Massive Dirac fermions and Hofstadter butterfly in a Van der Waals heterostructure. Science 340(6139), 1427–1430 (2013)CrossRefGoogle Scholar
  10. 10.
    Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)Google Scholar
  11. 11.
    Nenciu, G.: Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians. Rev. Mod. Phys. 63(1), 91 (1991)CrossRefGoogle Scholar
  12. 12.
    Pedersen, J.G., Gunst, T., Markussen, T., Pedersen, T.G.: Graphene antidot lattice waveguides. Phys. Rev. B 86(24), 245410 (2012)CrossRefGoogle Scholar
  13. 13.
    Pedersen, J.G., Pedersen, T.G.: Band gaps in graphene via periodic electrostatic gating. Phys. Rev. B 85(23), 235432 (2012)CrossRefGoogle Scholar
  14. 14.
    Pedersen, T.G., Flindt, C., Pedersen, J., Mortensen, N.A., Jauho, A.-P., Pedersen, K.: Graphene antidot lattices: designed defects and spin qubits. Phys. Rev. Lett. 100(13), 136804 (2008)CrossRefGoogle Scholar
  15. 15.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Analysis of Operators, vol. 4. Academic Press, New York (1978)zbMATHGoogle Scholar
  16. 16.
    Song, J.C., Shytov, A.V., Levitov, L.S.: Electron interactions and gap opening in graphene superlattices. Phys. Rev. Lett. 111(26), 266801 (2013)CrossRefGoogle Scholar
  17. 17.
    Thaller, B.: The Dirac equation. Texts and Monographs in Physics. Springer, Berlin (1992)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Aix Marseille UnivUniversité de Toulon, CNRS, CPTMarseilleFrance
  2. 2.Department of Mathematical SciencesAalborg UniversityAalborg ØDenmark
  3. 3.Institute of PhysicsPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations